144 research outputs found

    Simple holographic duals to boundary CFTs

    Full text link
    By relaxing the regularity conditions imposed in arXiv:1107.1722 on half-BPS solutions to six-dimensional Type~4b supergravity, we enlarge the space of solutions to include two new half-BPS configurations, which we refer to as the \kap\ and the \funnel. We give evidence that the \kap\ and \funnel\ can be interpreted as fully back-reacted brane solutions with respectively AdS2AdS_2 and AdS2Ă—S2AdS_2\times S^2 world volumes. \kap\ and \funnel\ solutions with a single asymptotic AdS3Ă—S3AdS_3 \times S^3 region are constructed analytically. We argue that \kap\ solutions provide simple examples of holographic duals to boundary CFTs in two dimensions and present calculations of their holographic boundary entropy to support the BCFT dual picture.Comment: 37 pages, pdflatex, 5 figure

    One-loop four-point amplitudes in pure and matter-coupled N <= 4 supergravity

    Full text link
    We construct all supergravity theories that can be obtained through factorized orbifold projections of N=8 supergravity, exposing their double-copy structure, and calculate their one-loop four-point scattering amplitudes. We observe a unified structure in both matter and gravity amplitudes, and demonstrate that the four-graviton amplitudes are insensitive to the precise nature of the matter couplings. We show that these amplitudes are identical for the two different realizations of N=4 supergravity with two vector multiplets, and argue that this feature extends to all multiplicities and loop orders as well as to higher dimensions. We also construct a selected set of supergravities obtained through a non-factorized orbifold action. Furthermore we calculate one-loop four-point amplitudes for all pure super-Yang-Mills theories with less-than-maximal supersymmetry using the duality between color and kinematics, finding here a unified expression that holds for all four gluon amplitudes in the theories. We recover the related amplitudes of factorized N<=4 supergravities employing the double-copy construction. We observe a requirement that the four-point loop-level amplitudes have non-local integrand representations, exhibiting a mild non-locality in the form of inverse powers of the three external Mandelstam invariants. These are the first loop-level color-kinematic-satisfying representations in reduced supersymmetry theories.Comment: 41 pages, 3 figures, PDFLaTeX, section 3.2 expanded, version accepted for publication in JHE

    Weak solutions to problems involving inviscid fluids

    Full text link
    We consider an abstract functional-differential equation derived from the pressure-less Euler system with variable coefficients that includes several systems of partial differential equations arising in the fluid mechanics. Using the method of convex integration we show the existence of infinitely many weak solutions for prescribed initial data and kinetic energy

    String Junctions and Holographic Interfaces

    Full text link
    In this paper we study half-BPS type IIB supergravity solutions with multiple AdS3Ă—S3Ă—M4AdS_3\times S^3\times M_4 asymptotic regions, where M4M_4 is either T4T^4 or K3K_3. These solutions were first constructed in [1] and have geometries given by the warped product of AdS2Ă—S2Ă—M4AdS_2 \times S^2 \times M_4 over ÎŁ\Sigma, where ÎŁ\Sigma is a Riemann surface. We show that the holographic boundary has the structure of a star graph, i.e. nn half-lines joined at a point. The attractor mechanism and the relation of the solutions to junctions of self-dual strings in six-dimensional supergravity are discussed. The solutions of [1] are constructed introducing two meromorphic and two harmonic functions defined on ÎŁ\Sigma. We focus our analysis on solutions corresponding to junctions of three different conformal field theories and show that the conditions for having a solution charged only under Ramond-Ramond three-form fields reduce to relations involving the positions of the poles and the residues of the relevant harmonic and meromorphic functions. The degeneration limit in which some of the poles collide is analyzed in detail. Finally, we calculate the holographic boundary entropy for a junction of three CFTs and obtain a simple expression in terms of poles and residues.Comment: 54 pages, 6 figures, pdf-LaTeX, v2: minor change

    Janus Black Holes

    Get PDF
    In this paper Janus black holes in AdS3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ black hole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.Comment: 28 pages, 2 figures, reference adde

    The use of positive end expiratory pressure in patients affected by COVID-19: Time to reconsider the relation between morphology and physiology

    Get PDF
    Coronavirus disease 2019 (COVID-19) is a new disease with different phases that can be catastrophic for subpopulations of patients with cardiovascular and pulmonary disease states at baseline. Appreciation for these different phases and treatment modalities, including manipulation of ventilatory settings and therapeutics, has made it a less lethal disease than when it emerged earlier this year. Different aspects of the disease are still largely unknown. However, laboratory investigation and clinical course of the COVID-19 show that this new disease is not a typical acute respiratory distress syndrome process, especially during the first phase. For this reason, the best strategy to be applied is to treat differently the single phases and to support the single functions of the failing organs as they appear

    Special Geometry of Euclidean Supersymmetry III: the local r-map, instantons and black holes

    Full text link
    We define and study projective special para-Kahler manifolds and show that they appear as target manifolds when reducing five-dimensional vector multiplets coupled to supergravity with respect to time. The dimensional reductions with respect to time and space are carried out in a uniform way using an epsilon-complex notation. We explain the relation of our formalism to other formalisms of special geometry used in the literature. In the second part of the paper we investigate instanton solutions and their dimensional lifting to black holes. We show that the instanton action, which can be defined after dualising axions into tensor fields, agrees with the ADM mass of the corresponding black hole. The relation between actions via Wick rotation, Hodge dualisation and analytic continuation of axions is discussed.Comment: 72 pages, 2 figure

    Boundary entropy of supersymmetric Janus solutions

    Get PDF
    In this paper we compute the holographic boundary entropy for half-BPS Janus deformations of the AdS3Ă—S3Ă—T4AdS_3\times S^3\times T^4 vacuum of type IIB supergravity. Previous work \cite{Chiodaroli:2009yw} has shown that there are two independent deformations of this sort. In one case, the six-dimensional dilaton jumps across the interface, while the other case displays a jump of axion and four-form potential. In case of a jump of the six-dimensional dilaton, it is possible to compare the holographic result with the weak-coupling result for a two-dimensional interface CFT where the radii of the compactified bosons jump across the interface. We find exact agreement between holographic and CFT results. This is to be contrasted with the holographic calculation for the non-supersymmetric Janus solution, which agrees with the CFT result only at the leading order in the jump parameter. We also examine the implications of the holographic calculation in case of a solution with a jump in the axion, which can be associated with a deformation of the CFT by the Z2Z_2-orbifold twist operator.Comment: 35 pages, pdf-LaTeX, 5 figures, v2: minor changes, typos corrected, reference adde

    Non-extremal Black Holes, Harmonic Functions, and Attractor Equations

    Full text link
    We present a method which allows to deform extremal black hole solutions into non-extremal solutions, for a large class of supersymmetric and non-supersymmetric Einstein-Vector-Scalar type theories. The deformation is shown to be largely independent of the details of the matter sector. While the line element is dressed with an additional harmonic function, the attractor equations for the scalars remain unmodified in suitable coordinates, and the values of the scalar fields on the outer and inner horizon are obtained from their fixed point values by making specific substitutions for the charges. For a subclass of models, which includes the five-dimensional STU-model, we find explicit solutions.Comment: 33 page
    • …
    corecore