393 research outputs found
Sex-based differences in functional brain activity during working memory in survivors of pediatric acute lymphoblastic leukemia
BACKGROUND: Long-term survivors of pediatric acute lymphoblastic leukemia are at elevated risk for neurocognitive deficits and corresponding brain dysfunction. This study examined sex-based differences in functional neuroimaging outcomes in acute lymphoblastic leukemia survivors treated with chemotherapy alone.
METHODS: Functional magnetic resonance imaging (fMRI) and neurocognitive testing were obtained in 123 survivors (46% male; median [min-max] age = 14.2 years [8.3-26.5 years]; time since diagnosis = 7.7 years [5.1-12.5 years]) treated on the St. Jude Total XV treatment protocol. Participants performed the n-back working memory task in a 3 T scanner. Functional neuroimaging data were processed (realigned, slice time corrected, normalized, smoothed) and analyzed using statistical parametric mapping with contrasts for 1-back and 2-back conditions, which reflect varying degrees of working memory and task load. Group-level fMRI contrasts were stratified by sex and adjusted for age and methotrexate exposure. Statistical tests were 2-sided (P \u3c .05 statistical significance threshold).
RESULTS: Relative to males, female survivors exhibited less activation (ie, reduced blood oxygen dependent-level signals) in the right parietal operculum, supramarginal gyrus and inferior occipital gyrus, and bilateral superior frontal medial gyrus during increased working memory load (family-wise error-corrected P = .004 to .008, adjusting for age and methotrexate dose). Female survivors were slower to correctly respond to the 2-back condition than males (P \u3c .05), though there were no differences in overall accuracy. Performance accuracy was negatively correlated with fMRI activity in female survivors (Pearson\u27s r = -0.39 to -0.29, P = .001 to .02), but not in males.
CONCLUSIONS: These results suggest the working memory network is more impaired in female survivors than male survivors, which may contribute to ongoing functional deficits
In Vivo Response to Methotrexate Forecasts Outcome of Acute Lymphoblastic Leukemia and Has a Distinct Gene Expression Profile
William Evans and colleagues investigate the genomic determinants of methotrexate resistance and interpatient differences in methotrexate response in patients newly diagnosed with childhood acute lymphoblastic leukemia
Genomic analysis of venous thrombosis in children with acute lymphoblastic leukemia from diverse ancestries
Venous thrombosis is a common adverse effect of modern therapy for acute lymphoblastic leukemia (ALL). Prior studies to identify risks of thrombosis in pediatric ALL have been limited by genetic screens of pre-identified genetic variants or genome- wide association studies (GWAS) in ancestrally uniform populations. To address this, we performed a retrospective cohort evaluation of thrombosis risk in 1,005 children treated for newly diagnosed ALL. Genetic risk factors were comprehensively evaluated from genome-wide single nucleotide polymorphism (SNP) arrays and were evaluated using Cox regression adjusting for identified clinical risk factors and genetic ancestry. The cumulative incidence of thrombosis was 7.8%. In multivariate analysis, older age, T-lineage ALL, and non-O blood group were associated with increased thrombosis while non-low-risk treatment and higher presenting white blood cell count trended toward increased thrombosis. No SNP reached genome-wide significance. The SNP most strongly associated with thrombosis was rs2874964 near RFXAP (G risk allele; P=4x10-7; hazard ratio [HR] =2.8). In patients of non-European ancestry, rs55689276 near the α globin cluster (P=1.28x10-6; HR=27) was most strongly associated with thrombosis. Among GWAS catalogue SNP reported to be associated with thrombosis, rs2519093 (T risk allele, P=4.8x10-4; HR=2.1), an intronic variant in ABO, was most strongly associated with risk in this cohort. Classic thrombophilia risks were not associated with thrombosis. Our study confirms known clinical risk features associated with thrombosis risk in children with ALL. In this ancestrally diverse cohort, genetic risks linked to thrombosis risk aggregated in erythrocyte-related SNP, suggesting the critical role of this tissue in thrombosis risk
Epigenetic activation of the FLT3 gene by ZNF384 fusion confers a therapeutic susceptibility in acute lymphoblastic leukemia.
FLT3 is an attractive therapeutic target in acute lymphoblastic leukemia (ALL) but the mechanism for its activation in this cancer is incompletely understood. Profiling global gene expression in large ALL cohorts, we identify over-expression of FLT3 in ZNF384-rearranged ALL, consistently across cases harboring different fusion partners with ZNF384. Mechanistically, we discover an intergenic enhancer element at the FLT3 locus that is exclusively activated in ZNF384-rearranged ALL, with the enhancer-promoter looping directly mediated by the fusion protein. There is also a global enrichment of active enhancers within ZNF384 binding sites across the genome in ZNF384-rearranged ALL cells. Downregulation of ZNF384 blunts FLT3 activation and decreases ALL cell sensitivity to FLT3 inhibitor gilteritinib in vitro. In patient-derived xenograft models of ZNF384-rearranged ALL, gilteritinib exhibits significant anti-leukemia efficacy as a monotherapy in vivo. Collectively, our results provide insights into FLT3 regulation in ALL and point to potential genomics-guided targeted therapy for this patient population
Career and life development intervention for non-engaged youth: Evaluating the Hong Kong Benchmarks (Community) Pilot Program
In our study, aimed at examining the effectiveness and impact of the Hong Kong Benchmarks (Community) Pilot Program, a career and life development (CLD) intervention program targeting non-engaged youth (NEY) in Hong Kong, we employed a pretest–posttest quasi-experimental design to compare changes in career-related competencies between a pilot group (N = 289) and a comparison group (N = 160). We also conducted five focus group interviews with the leaders of nongovernmental organizations, social workers, NEY, parents, and employers to explore the program’s impacts on the CLD service provisions. Our quantitative results indicate that the piloting group showed greater improvement in two career-related competencies—youth career development competency and career and life development hope—than the comparison group. Meanwhile, our qualitative results suggest both the benefits and difficulties experienced by stakeholders in the program. The findings thus provide preliminary evidence of the Hong Kong Benchmarks (Community) Pilot Program’s positive impacts on NEY and other important stakeholders. The implications of expanding the existing program and theorizing the community-based benchmark approach are also discussed
The efficacy and safety of Yupingfeng Powder with variation in the treatment of allergic rhinitis: Study protocol for a randomized, double-blind, placebo-controlled trial
Background: Allergic rhinitis (AR) is an upper airways chronic inflammatory disease mediated by IgE, which affects 10%–20% of the population. The mainstay for allergic rhinitis nowadays include steroids and antihistamines, but their effects are less than ideal. Many patients therefore seek Chinese medicine for treatment and Yupingfeng Powder is one of the most common formulae prescribed. In this study, we aim to investigate the efficacy and safety of Yupingfeng Powder with variation for the treatment of allergic rhinitis.Study design: This is a double-blind, randomized, placebo-controlled trial. A 2-week screening period will be implemented, and then eligible subjects with allergic rhinitis will receive interventions of either “Yupingfeng Powder with variation” granules or placebo granules for 8 weeks, followed by post treatment visits at weeks 12 and 16. The change in the Total Nasal Symptom Score (TNSS) will be used as the primary outcome.Discussion: This trail will evaluate the efficacy and safety of Yupingfeng Powder in treating allergic rhinitis. The study may provide the solid evidence of Yupingfeng Powder with variation can produce better clinical efficacy than the placebo granules.Trial registration:ClinicalTrials.gov, identifier NCT04976023
Ex vivo Drug Sensitivity Imaging-based Platform for Primary Acute Lymphoblastic Leukemia Cells
Resistance of acute lymphoblastic leukemia (ALL) cells to chemotherapy, whether present at diagnosis or acquired during treatment, is a major cause of treatment failure. Primary ALL cells are accessible for drug sensitivity testing at the time of new diagnosis or at relapse, but there are major limitations with current methods for determining drug sensitivity ex vivo. Here, we describe a functional precision medicine method using a fluorescence imaging platform to test drug sensitivity profiles of primary ALL cells. Leukemia cells are co-cultured with mesenchymal stromal cells and tested with a panel of 40 anti-leukemia drugs to determine individual patterns of drug resistance and sensitivity (“pharmacotype”). This imaging-based pharmacotyping assay addresses the limitations of prior ex vivo drug sensitivity methods by automating data analysis to produce high-throughput data while requiring fewer cells and significantly decreasing the labor-intensive time required to conduct the assay. The integration of drug sensitivity data with genomic profiling provides a basis for rational genomics-guided precision medicine.
Key features
Analysis of primary acute lymphoblastic leukemia (ALL) blasts obtained at diagnosis from bone marrow aspirate or peripheral blood.
Experiments are performed ex vivo with mesenchymal stromal cell co-culture and require four days to complete.
This fluorescence imaging–based protocol enhances previous ex vivo drug sensitivity assays and improves efficiency by requiring fewer primary cells while increasing the number of drugs tested to 40.
It takes approximately 2–3 h for sample preparation and processing and a 1.5-hour imaging time
Ex vivo Drug Sensitivity Imaging-based Platform for Primary Acute Lymphoblastic Leukemia Cells
Resistance of acute lymphoblastic leukemia (ALL) cells to chemotherapy, whether present at diagnosis or acquired during treatment, is a major cause of treatment failure. Primary ALL cells are accessible for drug sensitivity testing at the time of new diagnosis or at relapse, but there are major limitations with current methods for determining drug sensitivity ex vivo. Here, we describe a functional precision medicine method using a fluorescence imaging platform to test drug sensitivity profiles of primary ALL cells. Leukemia cells are co-cultured with mesenchymal stromal cells and tested with a panel of 40 anti-leukemia drugs to determine individual patterns of drug resistance and sensitivity ("pharmacotype"). This imaging-based pharmacotyping assay addresses the limitations of prior ex vivo drug sensitivity methods by automating data analysis to produce high-throughput data while requiring fewer cells and significantly decreasing the labor-intensive time required to conduct the assay. The integration of drug sensitivity data with genomic profiling provides a basis for rational genomics-guided precision medicine. Key features Analysis of primary acute lymphoblastic leukemia (ALL) blasts obtained at diagnosis from bone marrow aspirate or peripheral blood. Experiments are performed ex vivo with mesenchymal stromal cell co-culture and require four days to complete. This fluorescence imaging-based protocol enhances previous ex vivo drug sensitivity assays and improves efficiency by requiring fewer primary cells while increasing the number of drugs tested to 40. It takes approximately 2-3 h for sample preparation and processing and a 1.5-hour imaging time. Graphical overview
- …