6 research outputs found

    Absorption and Elimination of the Allelochemical MBOA by Weeds during Seedling Growth

    Get PDF
    6-Methoxy-2-benzoxazolinone (MBOA) is an allelochemical that is found in Poaceae and is generally associated with monocotyledon species. This compound is formed from the glycosylated form of 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (Gly-DIMBOA) by a two-stage degradation process. The MBOA detoxification capacity of two weed species, namely Echinochloa crus-galli and Lolium rigidum, and a resistant biotype of Lolium rigidum (SLR31) was studied both qualitatively and quantitatively. The product of metabolism is similar for both weed species. This finding indicates that these weeds probably metabolize xenobiotics by an identical route, since the product detected was the same in both cases. Kinetic studies on the absorption and translocation to the shoot showed differences in these processes depending on the species. The analysis of treated plants, which were subsequently transplanted to a growth medium without xenobiotic compound, showed that the weeds studied are capable of transmitting the previously absorbed compound to the medium by root exudation. The results show that this process is another defense mechanism of plants facing external threats

    Synthesis of Bioactive Speciosins G and P from Hexagonia speciosa

    Get PDF
    The first total synthesis of speciosins P and G, previously isolated from Hexagonia speciosa, is reported. These compounds have been synthesized by Sonogashira coupling from readily available starting materials. Siccayne was also synthesized from the same starting material in two steps along with a number of other derivatives. The compounds were tested in the wheat coleoptile bioassay. The most active compound was the intermediate 18, followed by 29 and 17. The structural requirements for activity in these compounds are the presence of methoxy groups in the aromatic ring and a formyl or hydroxy group in the side chain

    Soil biodegradation of a benzoxazinone analog proposed as a natural products-based herbicide

    Get PDF
    Aims Benzoxazinones with the 4-hydroxy-(2H)-1,4- benzoxazin-3(4H)-one skeleton have been proposed as potentially successful models for the development of novel design leads. D-DIBOA has proven to be the most promising base structure in the search for novel herbicide models based on the benzoxazinone skeleton. The biodegradation dynamics of D-DIBOA in soil are therefore relevant and are the subject of this study. Methods A previously optimized methodology for the assessment of biodegradation has been applied for the first time to a synthetic benzoxazinone. Results Biodegradability is a characteristic of natural benzoxazinones and a safety requirement for the development of herbicidal chemicals. The biodegradation phenomenon and its consequences for the development of new herbicide models are discussed. The half-life determined for D-DIBOA was much higher than those previously reported for the natural products DIBOA, DIMBOA and their benzoxazolinone derivatives. Conclusions This finding, together with its previously described potent phytotoxicity, suggests that D-DIBOA is a useful candidate for novel herbicide model development. The lactam D-HBOA, which is slightly less phytotoxic than its precursor, was discovered to be the first and principal metabolite resulting from D-DIBOA degradation

    How Different Cooking Methods Affect the Phenolic Composition of Sweet Potato for Human Consumption (Ipomea batata (L.) Lam)

    Get PDF
    In recent years, there has been increasing interest in the functional components of sweet potato because of its nutritional and medicinal value. The aim of this study is to analyse how much sweet potato phenolic compounds composition (derived from caffeoylquinic acids) varies as a result of cooking. Traditional techniques such as: boiling, oven roasting and more recent processing techniques such as microwave cooking were tested. Three sweet potato varieties were cooked for different periods of time and under different conditions. Ultrasound-assisted extraction (UAE) was used to extract the compounds of interest and then, a chemometric tool such as Box-Behnken design (BBD) was successfully used to evaluate and optimise the most influential factors in the extraction, i.e., temperature, solvent composition and sample-to-solvent ratio. The optimal settings for UAE were: solvent 100% methanol, a temperature of 39.4 degrees C and a mass/volume ratio of 0.5 g per 10 mL solvent. Oven roasting of sweet potatoes resulted in increased levels of caffeoylquinic acids, whereas prolonged cooking times in water resulted in decreasing levels of the same.This work has been supported by the project "EQC2018-005135-P" (Equipment for liquid chromatography by means of mass spectrometry and ion chromatography) of the State Subprogram of Research Infrastructures and Technical Scientific Equipment

    On the formulation of disulfide herbicides based on aminophenoxazinones: polymeric nanoparticle formulation and cyclodextrin complexation to combat crop yield losses

    Get PDF
    BackgroundThe resistance of weeds to herbicides is a significant issue in ensuring future food supply. Specific examples are Plantago lanceolata, Portulaca oleracea and Lolium rigidum, which mainly infect rice, wheat, barley and pastures, and cause high yield losses every year. In this regard, natural products and their mimics have provided new hope as a result of their different modes-of-action, activity at low concentrations and reduced pollution effects relative to conventional herbicides. However, the poor water solubility and physicochemical properties of these compounds limit their broad application. These problems can be addressed by formulation techniques, and encapsulation appears to be of great interest. ResultsDisulfide herbicides inspired by aminophenoxazinones have been formulated with 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD), gamma-CD and polymeric nanoparticles (NPs). In silico studies were employed to identify which complexes would be generated and complex formation was confirmed by nuclear magnetic resonance spectroscopy. Solubility diagrams were generated to assess any improvement in water solubility, which was enhanced 2-13-fold. Scanning electron microscopy and energy-dispersive X-ray spectra confirmed the success of the formulation process for the nanoparticles. Formulated compounds were evaluated in an in vitro wheat coleoptile bioassay, with almost 100% elongation inhibition achieved using only water for the bioassay. Specific in vitro testing on weed phytotoxicity showed that the application of core/shell NPs is highly effective in the fight against P. lanceolata seed germination. ConclusionsThe formulation of disulfide herbicides with CD complexes and NPs led to an enhancement in water solubility and bioactivity. These systems can be applied in pre-emergent mode against P. lanceolata, using only water to prepare the sample, and they showed better activity than the positive controls. (c) 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industr

    In Silico Evaluation of Sesquiterpenes and Benzoxazinoids Phytotoxins against M-pro, RNA Replicase and Spike Protein of SARS-CoV-2 by Molecular Dynamics. Inspired by Nature

    Get PDF
    In the work described here, a number of sesquiterpenes and benzoxazinoids from natural sources, along with their easily accessible derivatives, were evaluated against the main protease, RNA replicase and spike glycoprotein of SARS-CoV-2 by molecular docking. These natural products and their derivatives have previously shown remarkable antiviral activities. The most relevant compounds were the 4-fluoro derivatives of santamarine, reynosin and 2-amino-3H-phenoxazin-3-one in terms of the docking score. Those compounds fulfill the Lipinski's rule, so they were selected for the analysis by molecular dynamics, and the kinetic stabilities of the complexes were assessed. The addition of the 4-fluorobenzoate fragment to the natural products enhances their potential against all of the proteins tested, and the complex stability after 50 ns validates the inhibition calculated. The derivatives prepared from reynosin and 2-amino-3H-phenoxazin-3-one are able to generate more hydrogen bonds with the M-pro, thus enhancing the stability of the protein-ligand and generating a long-term complex for inhibition. The 4-fluoro derivate of santamarine and reynosin shows to be really active against the spike protein, with the RMSD site fluctuation lower than 1.5 angstrom. Stabilization is mainly achieved by the hydrogen-bond interactions, and the stabilization is improved by the 4-fluorobenzoate fragment being added. Those compounds tested in silico reach as candidates from natural sources to fight this virus, and the results concluded that the addition of the 4-fluorobenzoate fragment to the natural products enhances their inhibition potential against the main protease, RNA replicase and spike protein of SARS-CoV-2
    corecore