100 research outputs found

    Effects of flanking sequences and cellular context on subcellular behavior and pathology of mutant HTT

    Get PDF
    Huntington’s disease (HD) is caused by an expansion of a poly glutamine (polyQ) stretch in the huntingtin protein (HTT) that is necessary to cause pathology and formation of HTT aggregates. Here we ask whether expanded polyQ is sufficient to cause pathology and aggregate formation. By addressing the sufficiency question, one can identify cellular processes and structural parameters that influence HD pathology and HTT subcellular behavior (i.e. aggregation state and subcellular location). Using Drosophila, we compare the effects of expressing mutant full-length human HTT (fl-mHTT) to the effects of mutant human HTTexon1 and to two commonly used synthetic fragments, HTT171 and shortstop (HTT118). Expanded polyQ alone is not sufficient to cause inclusion formation since full-length HTT and HTTex1 with expanded polyQ are both toxic although full-length HTT remains diffuse while HTTex1 forms inclusions. Further, inclusions are not sufficient to cause pathology since HTT171-120Q forms inclusions but is benign and co-expression of HTT171-120Q with non-aggregating pathogenic fl-mHTT recruits fl-mHTT to aggregates and rescues its pathogenicity. Additionally, the influence of sequences outside the expanded polyQ domain is revealed by finding that small modifications to the HTT118 or HTT171 fragments can dramatically alter their subcellular behavior and pathogenicity. Finally, mutant HTT subcellular behavior is strongly modified by different cell and tissue environments (e.g. fl-mHTT appears as diffuse nuclear in one tissue and diffuse cytoplasmic in another but toxic in both). These observations underscore the importance of cellular and structural context for the interpretation and comparison of experiments using different fragments and tissues to report the effects of expanded polyQ

    2009 Focused Update Incorporated Into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation

    Get PDF
    Heart failure (HF) is a major and growing public health problem in the United States. Approximately 5 million patients in this country have HF, and over 550,000 patients are diagnosed with HF for the first time each year. The disorder is the primary reason for 12 to 15 million office visits and 6.5 million hospital days each year. From 1990 to 1999, the annual number of hospitalizations has increased from approximately 810,000 to over 1 million for HF as a primary diagnosis and from 2.4 to 3.6 million for HF as a primary or secondary diagnosis. In 2001, nearly 53 000 patients died of HF as a primary cause. The number of HF deaths has increased steadily despite advances in treatment, in part because of increasing numbers of patients with HF due to better treatment and “salvage” of patients with acute myocardial infarctions (MIs) earlier in life. Heart failure is primarily a condition of the elderly, and thus the widely recognized “aging of the population” also contributes to the increasing incidence of HF. The incidence of HF approaches 10 per 1000 population after age 65, and approximately 80% of patients hospitalized with HF are more than 65 years old. Heart failure is the most common Medicare diagnosis-related group (i.e., hospital discharge diagnosis), and more Medicare dollars are spent for the diagnosis and treatment of HF than for any other diagnosis. The total estimated direct and indirect costs for HF in 2005 were approximately 27.9billion.IntheUnitedStates,approximately27.9 billion. In the United States, approximately 2.9 billion annually is spent on drugs for the treatment of HF

    Débat avec les responsables scientifiques de l’axe 3

    Get PDF
    Valérie Carayol : Vous avez dit que « dans la mêlée du direct, nous participons plutôt que nous symbolisons » et que « l’induction se vit au présent ». Hier, avec Wolfgang Settekorn qui nous a parlé de métaphorisations mutuelles avec des exemples visuels et avec Philippe Breton qui nous a parlé d’amalgame, on avait déjà esquissé un rapprochement entre l’induction et les dynamiques spatiales, pas obligatoirement une dynamique temporelle. Est-ce que vous pourriez préciser cette idée du direct, ..

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Design and Organization of the Dexamethasone, Light Anesthesia and Tight Glucose Control (DeLiT) Trial: a factorial trial evaluating the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The perioperative period is characterized by an intense inflammatory response. Perioperative inflammation promotes postoperative morbidity and increases mortality. Blunting the inflammatory response to surgical trauma might thus improve perioperative outcomes. We are studying three interventions that potentially modulate perioperative inflammation: corticosteroids, tight glucose control, and light anesthesia.</p> <p>Methods/Design</p> <p>The DeLiT Trial is a factorial randomized single-center trial of dexamethasone vs placebo, intraoperative tight vs. conventional glucose control, and light vs deep anesthesia in patients undergoing major non-cardiac surgery. Anesthetic depth will be estimated with Bispectral Index (BIS) monitoring (Aspect medical, Newton, MA). The primary outcome is a composite of major postoperative morbidity including myocardial infarction, stroke, sepsis, and 30-day mortality. C-reactive protein, a measure of the inflammatory response, will be evaluated as a secondary outcome. One-year all-cause mortality as well as post-operative delirium will be additional secondary outcomes. We will enroll up to 970 patients which will provide 90% power to detect a 40% reduction in the primary outcome, including interim analyses for efficacy and futility at 25%, 50% and 75% enrollment.</p> <p>Discussion</p> <p>The DeLiT trial started in February 2007. We expect to reach our second interim analysis point in 2010. This large randomized controlled trial will provide a reliable assessment of the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery. The factorial design will enable us to simultaneously study the effects of the three interventions in the same population, both individually and in different combinations. Such a design is an economically efficient way to study the three interventions in one clinical trial vs three.</p> <p>Trial registration</p> <p><b>This trial is registered at </b>Clinicaltrials.gov <b>#</b>: NTC00433251</p

    Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration

    Get PDF
    Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10−8] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10−9). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD

    ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: Executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure)

    Get PDF
    "Heart failure (HF) is a major public health problem in the United States. Nearly 5 million patients in this country have HF, and nearly 500,000 patients are diagnosed with HF for the first time each year. The disorder is the underlying reason for 12 to 15 million office visits and 6.5 million hospital days each year (1). During the last 10 years, the annual number of hospitalizations has increased from approximately 550,000 to nearly 900,000 for HF as a primary diagnosis and from 1.7 to 2.6 million for HF as a primary or secondary diagnosis (2). Nearly 300,000 patients die of HF as a primary or contributory cause each year, and the number of deaths has increased steadily despite advances in treatment. HF is primarily a disease of the elderly (3). Approximately 6% to 10% of people older than 65 years have HF (4), and approximately 80% of patients hospitalized with HF are more than 65 years old (2). HF is the most common Medicare diagnosis-related group, and more Medicare dollars are spent for the diagnosis and treatment of HF than for any other diagnosis (5). The total inpatient and outpatient costs for HF in 1991 were approximately 38.1billion,whichwasapproximately5.438.1 billion, which was approximately 5.4% of the healthcare budget that year (1). In the United States, approximately 500 million annually is spent on drugs for the treatment of HF. The American College of Cardiology (ACC) and the American Heart Association (AHA) first published guidelines for the evaluation and management of HF in 1995 (6). Since that time, a great deal of progress has been made in the development of both pharmacological and nonpharmacological approaches to treatment for this common, costly, disabling, and generally fatal disorder. For this reason, the 2 organizations believed that the time was right to reassess and update these guidelines, fully recognizing that the optimal therapy of HF remains a work in progress and that future guidelines will supersede these.
    corecore