1,153 research outputs found

    Supply chain management resources, capabilities and execution

    Get PDF
    This paper identifies inter- and intra-organisational management resources that determine the level of execution of inter-firm alliance supply chain management (SCM). By drawing on network and resource-based view theories, a conceptual model proposes the effects of SCM resources and capabilities as influencing factors on SCM execution. The model was tested using survey data from studies conducted in two European supply chain environments. Variance-based structural equation modelling confirmed the hypothesised hierarchical order of three proposed antecedents: internal SCM resources affect joint SCM resources, which in turn influence collaborative SCM-related processes and finally SCM execution. An importance-performance analysis for both settings shows that providing and investing in internal SCM resources should be a priority when aiming to increase SCM execution. The theoretical contribution of this paper lies in confirming that the improvement of SCM execution follows a clear pathway featuring internal supply chain resources as one of the main drivers. The practical implications of this research include the development of a prioritisation list of measures that elevate SCM execution in the two country settings

    Hot instantaneous temperature and affect : meaningful activities as a buffer for older adults with low socioeconomic status

    Get PDF
    Background and Objectives -- Extremely hot temperature affects psychological well-being negatively, especially for older adults with lower socioeconomic status (SES). The objectives of this study are to examine: (1) the impact of hot instantaneous temperature on older adults’ emotional well-being; and (2) whether meaningful engagement could reduce the above impact, particularly for those of lower SES. Research Design and Methods -- We conducted a quantitative time sampling study during hot-weather months (May–September) in 2021 and 2022. The sample comprises 344 participants aged 60 years or above (Mage = 67.15, SDage = 5.26) living in urban areas of Hong Kong, where hot days (daily maximum temperature >= 33℃) accounted for 23% of the study days. Participants reported positive and negative affect, and engagement in meaningful activities, three times a day over a 10-day period, and wore sensors that tracked the instantaneous temperature of their immediate environment. Multilevel modeling was employed to examine the impacts on affect from temperature, SES, and meaningful activity engagement. Results -- Hotter instantaneous temperature predicted greater momentary negative affect and less positive affect immediately afterwards. Meaningful engagement significantly buffered against the affective impacts of hotter temperature, and this buffering effect was more salient among older adults of lower SES. Discussion and implications -- This study highlights the role of meaningful engagement in reducing the impact of hotter instantaneous temperature on older adults’ emotional well-being, particularly for those of lower SES. Meaningful activity engagement may be capitalized on, as a strategy, to reduce climate-related social inequality

    Runaway evaporation for optically dressed atoms

    Get PDF
    Forced evaporative cooling in a far-off-resonance optical dipole trap is proved to be an efficient method to produce fermionic- or bosonic-degenerated gases. However in most of the experiences, the reduction of the potential height occurs with a diminution of the collision elastic rate. Taking advantage of a long-living excited state, like in two-electron atoms, I propose a new scheme, based on an optical knife, where the forced evaporation can be driven independently of the trap confinement. In this context, the runaway regime might be achieved leading to a substantial improvement of the cooling efficiency. The comparison with the different methods for forced evaporation is discussed in the presence or not of three-body recombination losses

    Genetic Incorporation of Unnatural Amino Acids into Proteins in Mycobacterium tuberculosis

    Get PDF
    New tools are needed to study the intracellular pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), to facilitate new drug discovery and vaccine development. We have developed methodology to genetically incorporate unnatural amino acids into proteins in Mycobacterium smegmatis, BCG and Mtb, grown both extracellularly in culture and inside host cells. Orthogonal mutant tRNATyr/tyrosyl-tRNA synthetase pairs derived from Methanococcus jannaschii and evolved in Escherichia coli incorporate a variety of unnatural amino acids (including photocrosslinking, chemically reactive, heavy atom containing, and immunogenic amino acids) into proteins in response to the amber nonsense codon. By taking advantage of the fidelity and suppression efficiency of the MjtRNA/pIpaRS pair in mycobacteria, we are also able to use p-iodophenylalanine to induce the expression of proteins in mycobacteria both extracellularly in culture and inside of mammalian host cells. This provides a new approach to regulate the expression of reporter genes or mycobacteria endogenous genes of interest. The establishment of the unnatural amino acid expression system in Mtb, an intracellular pathogen, should facilitate studies of TB biology and vaccine development

    Myocardial Fibrosis and Cardiac Decompensation in Aortic Stenosis

    Get PDF
    OBJECTIVES: Cardiac magnetic resonance (CMR) was used to investigate the extracellular compartment and myocardial fibrosis in patients with aortic stenosis, as well as their association with other measures of left ventricular decompensation and mortality. BACKGROUND: Progressive myocardial fibrosis drives the transition from hypertrophy to heart failure in aortic stenosis. Diffuse fibrosis is associated with extracellular volume expansion that is detectable by T1 mapping, whereas late gadolinium enhancement (LGE) detects replacement fibrosis. METHODS: In a prospective observational cohort study, 203 subjects (166 with aortic stenosis [69 years; 69% male]; 37 healthy volunteers [68 years; 65% male]) underwent comprehensive phenotypic characterization with clinical imaging and biomarker evaluation. On CMR, we quantified the total extracellular volume of the myocardium indexed to body surface area (iECV). The iECV upper limit of normal from the control group (22.5 ml/m(2)) was used to define extracellular compartment expansion. Areas of replacement mid-wall LGE were also identified. All-cause mortality was determined during 2.9 ± 0.8 years of follow up. RESULTS: iECV demonstrated a good correlation with diffuse histological fibrosis on myocardial biopsies (r = 0.87; p < 0.001; n = 11) and was increased in patients with aortic stenosis (23.6 ± 7.2 ml/m(2) vs. 16.1 ± 3.2 ml/m(2) in control subjects; p < 0.001). iECV was used together with LGE to categorize patients with normal myocardium (iECV <22.5 ml/m(2); 51% of patients), extracellular expansion (iECV ≥22.5 ml/m(2); 22%), and replacement fibrosis (presence of mid-wall LGE, 27%). There was evidence of increasing hypertrophy, myocardial injury, diastolic dysfunction, and longitudinal systolic dysfunction consistent with progressive left ventricular decompensation (all p < 0.05) across these groups. Moreover, this categorization was of prognostic value with stepwise increases in unadjusted all-cause mortality (8 deaths/1,000 patient-years vs. 36 deaths/1,000 patient-years vs. 71 deaths/1,000 patient-years, respectively; p = 0.009). CONCLUSIONS: CMR detects ventricular decompensation in aortic stenosis through the identification of myocardial extracellular expansion and replacement fibrosis. This holds major promise in tracking myocardial health in valve disease and for optimizing the timing of valve replacement. (The Role of Myocardial Fibrosis in Patients With Aortic Stenosis; NCT01755936)

    A molecular movie of ultrafast singlet fission

    Get PDF
    Abstract: The complex dynamics of ultrafast photoinduced reactions are governed by their evolution along vibronically coupled potential energy surfaces. It is now often possible to identify such processes, but a detailed depiction of the crucial nuclear degrees of freedom involved typically remains elusive. Here, combining excited-state time-domain Raman spectroscopy and tree-tensor network state simulations, we construct the full 108-atom molecular movie of ultrafast singlet fission in a pentacene dimer, explicitly treating 252 vibrational modes on 5 electronic states. We assign the tuning and coupling modes, quantifying their relative intensities and contributions, and demonstrate how these modes coherently synchronise to drive the reaction. Our combined experimental and theoretical approach reveals the atomic-scale singlet fission mechanism and can be generalized to other ultrafast photoinduced reactions in complex systems. This will enable mechanistic insight on a detailed structural level, with the ultimate aim to rationally design molecules to maximise the efficiency of photoinduced reactions

    Adverse prognosis associated with asymmetric myocardial thickening in aortic stenosis

    Get PDF
    Aims: Asymmetric wall thickening has been described in patients with aortic stenosis. However, it remains poorly characterized and its prognostic implications are unclear. We hypothesized this pattern of adaptation is associated with advanced remodelling, left ventricular decompenzation, and a poor prognosis. Methods and results: In a prospective observational cohort study, 166 patients with aortic stenosis (age 69, 69% males, mean aortic valve area 1.0 ± 0.4 cm2) and 37 age and sex-matched healthy volunteers underwent phenotypic characterization with comprehensive clinical, imaging, and biomarker evaluation. Asymmetric wall thickening on both echocardiography and cardiovascular magnetic resonance was defined as regional wall thickening ≥ 13 mm and > 1.5-fold the thickness of the opposing myocardial segment. Although no control subject had asymmetric wall thickening, it was observed in 26% (n = 43) of patients with aortic stenosis using magnetic resonance and 17% (n = 29) using echocardiography. Despite similar demographics, co-morbidities, valve narrowing, myocardial hypertrophy, and fibrosis, patients with asymmetric wall thickening had increased cardiac troponin I and brain natriuretic peptide concentrations (both P < 0.001). Over 28 [22, 33] months of follow-up, asymmetric wall thickening was an independent predictor of aortic valve replacement (AVR) or death whether detected by magnetic resonance [hazard ratio (HR) = 2.15; 95% confidence interval (CI) 1.29-3.59; P = 0.003] or echocardiography (HR = 1.79; 95% CI 1.08-3.69; P = 0.021). Conclusion: Asymmetric wall thickening is common in aortic stenosis and is associated with increased myocardial injury, left ventricular decompenzation, and adverse events. Its presence may help identify patients likely to proceed quickly towards AVR. Clinical Trial Registration: https://clinicaltrials.gov/show/NCT01755936: NCT01755936

    Nonlinear Measures for Characterizing Rough Surface Morphologies

    Full text link
    We develop a new approach to characterizing the morphology of rough surfaces based on the analysis of the scaling properties of contour loops, i.e. loops of constant height. Given a height profile of the surface we perform independent measurements of the fractal dimension of contour loops, and the exponent that characterizes their size distribution. Scaling formulas are derived and used to relate these two geometrical exponents to the roughness exponent of a self-affine surface, thus providing independent measurements of this important quantity. Furthermore, we define the scale dependent curvature and demonstrate that by measuring its third moment departures of the height fluctuations from Gaussian behavior can be ascertained. These nonlinear measures are used to characterize the morphology of computer generated Gaussian rough surfaces, surfaces obtained in numerical simulations of a simple growth model, and surfaces observed by scanning-tunneling-microscopes. For experimentally realized surfaces the self-affine scaling is cut off by a correlation length, and we generalize our theory of contour loops to take this into account.Comment: 39 pages and 18 figures included; comments to [email protected]
    corecore