4 research outputs found

    The POLARIS peptide.

    No full text

    The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling

    No full text
    The rate and plane of cell division and anisotropic cell growth are critical for plant development and are regulated by diverse mechanisms involving several hormone signaling pathways. Little is known about peptide signaling in plant growth; however, Arabidopsis thaliana POLARIS (PLS), encoding a 36–amino acid peptide, is required for correct root growth and vascular development. Mutational analysis implicates a role for the peptide in hormone responses, but the basis of PLS action is obscure. Using the Arabidopsis root as a model to study PLS action in plant development, we discovered a link between PLS, ethylene signaling, auxin homeostasis, and microtubule cytoskeleton dynamics. Mutation of PLS results in an enhanced ethylene-response phenotype, defective auxin transport and homeostasis, and altered microtubule sensitivity to inhibitors. These defects, along with the short-root phenotype, are suppressed by genetic and pharmacological inhibition of ethylene action. PLS expression is repressed by ethylene and induced by auxin. Our results suggest a mechanism whereby PLS negatively regulates ethylene responses to modulate cell division and expansion via downstream effects on microtubule cytoskeleton dynamics and auxin signaling, thereby influencing root growth and lateral root development. This mechanism involves a regulatory loop of auxin–ethylene interactions

    Small Post-Translationally Modified Peptide Signals in Arabidopsis

    No full text
    Recent biochemical, genetic and bioinformatic studies have demonstrated that peptide signaling plays a greater than anticipated role in various aspects of plant growth and development. More than a dozen secreted peptides are now recognized as important signals that mediate cell-to-cell communication. Secreted peptide signals often undergo post-translational modification and proteolytic processing, which are important for their function. Such “small post-translationally modified peptide signals” constitute one of the largest groups of peptide signals in plants. In parallel with the discovery of peptide signals, specific receptors for such peptides were identified as being membrane-localized receptor kinases, the largest family of receptor-like molecules in plants. These findings illustrate the critical roles of small peptide ligand-receptor pairs in plant growth and development. This review outlines recent research into secreted peptide signals in plants by focusing on small post-translationally modified peptides
    corecore