27 research outputs found

    Crossroads: A Shifting Landscape

    Get PDF
    Catalog for the exhibition Crossroads: A Shifting Landscape held at the Seton Hall University Walsh Gallery, January 17 - February 17, 2012. Curated by Jesse Gordon and Emily Ozga. Includes an essay by Jesse Gordon and Emily Ozga. Includes color illustrations

    The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water.

    Get PDF
    BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    2008 Mississippi 1st Congressional District Forum

    No full text
    Jonathan Scott, News Editor of The Oxford Eagle, moderated a debate between Mayor Greg Davis and Congressman Travis Childers, candidates for the 1st district Congressional seat

    2010 1st Mississippi District Congressional Debate

    No full text
    The only debate scheduled in the campaign for the 1st Congressional District seat, the contest gathered momentum and attracted national attention as one of the close races that helped determine the majority party in the 2011 Congress. The two major candidates, Democratic Congressman Travis Childers, the incumbent, and his Republican challenger, state Senator Alan Nunnelee, agreed to make a rare joint appearance to take questions from a panel of North Mississippi journalists from the district. Moderated by Curtis Wilkie

    RESISTANCE TO DELTAMETHRIN IN PRAIRIE DOG (\u3ci\u3eCYNOMYS LUDOVICIANUS\u3c/i\u3e) FLEAS IN THE FIELD AND IN THE LABORATORY

    Get PDF
    Sylvatic plague poses a substantial risk to black-tailed prairie dogs (Cynomys ludovicianus) and their obligate predator, the black-footed ferret (Mustela nigripes). The effects of plague on prairie dogs and ferrets are mitigated using a deltamethrin pulicide dust that reduces the spread of plague by killing fleas, the vector for the plague bacterium. In portions of Conata Basin, Buffalo Gap National Grassland, and Badlands National Park, South Dakota, US, 0.05% deltamethrin has been infused into prairie dog burrows on an annual basis since 2005. We aimed to determine if fleas (Oropsylla hirsuta) in portions of the Conata Basin and Badlands National Park have evolved resistance to deltamethrin. We assessed flea prevalence, obtained by combing prairie dogs for fleas, as an indirect measure of resistance. Dusting was ineffective in two colonies treated with deltamethrin for .8 yr; flea prevalence rebounded within 1 mo of dusting. We used a bioassay that exposed fleas to deltamethrin to directly evaluate resistance. Fleas from colonies with .8 yr of exposure to deltamethrin exhibited survival rates that were 15% to 83% higher than fleas from sites that had never been dusted. All fleas were paralyzed or dead after 55 min. After removal from deltamethrin, 30% of fleas from the dusted colonies recovered, compared with 1% of fleas from the not-dusted sites. Thus, deltamethrin paralyzed fleas from colonies with long-term exposure to deltamethrin, but a substantial number of those fleas was resistant and recovered. Flea collections from live-trapped prairie dogs in Thunder Basin National Grassland, Wyoming, US, suggest that, in some cases, fleas might begin to develop a moderate level of resistance to deltamethrin after 5–6 yr of annual treatments. Restoration of black-footed ferrets and prairie dogs will rely on an adaptive, integrative approach to plague management, for instance involving the use of vaccines and rotating applications of insecticidal products with different active ingredients

    Interplay between innate and adaptive immunity in the development of non-infectious uveitis

    No full text
    In vertebrates, the innate and adaptive immune systems have evolved seamlessly to protect the host by rapidly responding to danger signals, eliminating pathogens and creating immunological memory as well as immunological tolerance to self. The innate immune system harnesses receptors that recognize conserved pathogen patterns and alongside the more specific recognition systems and memory of adaptive immunity, their interplay is evidenced by respective roles during generation and regulation of immune responses. The hallmark of adaptive immunity which requires engagement of innate immunity is an ability to discriminate between self and non-self (and eventually between pathogen and symbiont) as well as peripheral control mechanisms maintaining immunological health and appropriate responses. Loss of control mechanisms and/or regulation of either the adaptive or the innate immune system lead to autoimmunity and autoinflammation respectively. Although autoimmune pathways have been largely studied to date in the context of development of non-infectious intraocular inflammation, the recruitment and activation of innate immunity is required for full expression of the varied phenotypes of non-infectious uveitis. Since autoimmunity and autoinflammation implicate different molecular pathways, even though some convergence occurs, increasing our understanding of their respective roles in the development of uveitis will highlight treatment targets and influence our understanding of immune mechanisms operative in other retinal diseases. Herein, we extrapolate from the basic mechanisms of activation and control of innate and adaptive immunity to how autoinflammatory and autoimmune pathways contribute to disease development in non-infectious uveitis patients. © 2011 Elsevier Ltd.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    RESISTANCE TO DELTAMETHRIN IN PRAIRIE DOG (\u3ci\u3eCYNOMYS LUDOVICIANUS\u3c/i\u3e) FLEAS IN THE FIELD AND IN THE LABORATORY

    Get PDF
    Sylvatic plague poses a substantial risk to black-tailed prairie dogs (Cynomys ludovicianus) and their obligate predator, the black-footed ferret (Mustela nigripes). The effects of plague on prairie dogs and ferrets are mitigated using a deltamethrin pulicide dust that reduces the spread of plague by killing fleas, the vector for the plague bacterium. In portions of Conata Basin, Buffalo Gap National Grassland, and Badlands National Park, South Dakota, US, 0.05% deltamethrin has been infused into prairie dog burrows on an annual basis since 2005. We aimed to determine if fleas (Oropsylla hirsuta) in portions of the Conata Basin and Badlands National Park have evolved resistance to deltamethrin. We assessed flea prevalence, obtained by combing prairie dogs for fleas, as an indirect measure of resistance. Dusting was ineffective in two colonies treated with deltamethrin for .8 yr; flea prevalence rebounded within 1 mo of dusting. We used a bioassay that exposed fleas to deltamethrin to directly evaluate resistance. Fleas from colonies with .8 yr of exposure to deltamethrin exhibited survival rates that were 15% to 83% higher than fleas from sites that had never been dusted. All fleas were paralyzed or dead after 55 min. After removal from deltamethrin, 30% of fleas from the dusted colonies recovered, compared with 1% of fleas from the not-dusted sites. Thus, deltamethrin paralyzed fleas from colonies with long-term exposure to deltamethrin, but a substantial number of those fleas was resistant and recovered. Flea collections from live-trapped prairie dogs in Thunder Basin National Grassland, Wyoming, US, suggest that, in some cases, fleas might begin to develop a moderate level of resistance to deltamethrin after 5–6 yr of annual treatments. Restoration of black-footed ferrets and prairie dogs will rely on an adaptive, integrative approach to plague management, for instance involving the use of vaccines and rotating applications of insecticidal products with different active ingredients
    corecore