3,589 research outputs found
Recommended from our members
Ensemble learning of model hyperparameters and spatiotemporal data for calibration of low-cost PM2.5 sensors.
he PM2.5 air quality index (AQI) measurements from government-built supersites are accurate but cannot provide a dense coverage of monitoring areas. Low-cost PM2.5 sensors can be used to deploy a fine-grained internet-of-things (IoT) as a complement to government facilities. Calibration of low-cost sensors by reference to high-accuracy supersites is thus essential. Moreover, the imputation for missing-value in training data may affect the calibration result, the best performance of calibration model requires hyperparameter optimization, and the affecting factors of PM2.5 concentrations such as climate, geographical landscapes and anthropogenic activities are uncertain in spatial and temporal dimensions. In this paper, an ensemble learning for imputation method selection, calibration model hyperparameterization, and spatiotemporal training data composition is proposed. Three government supersites are chosen in central Taiwan for the deployment of low-cost sensors and hourly PM2.5 measurements are collected for 60 days for conducting experiments. Three optimizers, Sobol sequence, Nelder and Meads, and particle swarm optimization (PSO), are compared for evaluating their performances with various versions of ensembles. The best calibration results are obtained by using PSO, and the improvement ratios with respect to R2, RMSE, and NME, are 4.92%, 52.96%, and 56.85%, respectively
The Initiative of Distance E-Training System for Advanced Military Education in Taiwan
[[abstract]]The military advanced education can prepare officers to become skillful in war tactics for future combats. Traditionally, this is done through on-campus and correspondence courses. The on-campus education is impossible for line-officer whereas the correspondence program is known to be inefficiency. This paper aims to content the learning purposes of the correspondence program with the learning efficiency of the on-campus education. This paper presents an alternative distance learning architecture, called Distance Learning for Advanced Military Education (DL4AME), to offer the advantages of on-campus education (immediate interaction) be available in the correspondence program (asynchronous learning). The major contribution of this integrated platform is that instructors and learners are no longer constrained by geographical and temporal barriers; they can teach and learn more effectively.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙
Universal protein fluctuations in populations of microorganisms
The copy number of any protein fluctuates among cells in a population;
characterizing and understanding these fluctuations is a fundamental problem in
biophysics. We show here that protein distributions measured under a broad
range of biological realizations collapse to a single non-Gaussian curve under
scaling by the first two moments. Moreover in all experiments the variance is
found to depend quadratically on the mean, showing that a single degree of
freedom determines the entire distribution. Our results imply that protein
fluctuations do not reflect any specific molecular or cellular mechanism, and
suggest that some buffering process masks these details and induces
universality
Proportional and Preemption-enabled Traffic Offloading for IP Flow Mobility:Algorithms and Performance Evaluation
IP Flow Mobility (IFOM) enables a user equipment to offload data traffic at the IP flow level. Although the procedure of IFOM-based flow offloading has been specified by 3GPP, how many IP flows should be offloaded and when offloading should be performed are not defined. Consequently, IP flows may be routed to a target access network which has a strong signal strength but with backhaul congestion or insufficient access capability. In this paper, we propose two algorithms, referred to as proportional offloading (PO), and proportional and preemption-enabled offloading (PPO), respectively, for IP flow offloading in hybrid cellular and wireless local area networks. The PO algorithm decides an optimal proportion of IP flows which could be offloaded by considering available resources at the target access network. In the PPO algorithm, both service continuity and network utilization are taken into consideration. Furthermore, a detailed analytical model is developed in order to evaluate the behavior of the proposed algorithms. The analytical model is validated through extensive simulations. The results show that by dynamically adjusting the percentage of traffic flows to be offloaded, PO can reduce blocking probability and increase resource utilization. PPO further improves the performance at the cost of slightly higher offloading overhead
A micromachined flow shear-stress sensor based on thermal transfer principles
Microhot-film shear-stress sensors have been developed by using surface micromachining techniques. The sensor consists of a suspended silicon-nitride diaphragm located on top of a vacuum-sealed cavity. A heating and heat-sensing element, made of polycrystalline silicon material, resides on top of the diaphragm. The underlying vacuum cavity greatly reduces conductive heat loss to the substrate and therefore increases the sensitivity of the sensor. Testing of the sensor has been conducted in a wind tunnel under three operation modes-constant current, constant voltage, and constant temperature. Under the constant-temperature mode, a typical shear-stress sensor exhibits a time constant of 72 μs
Micro thermal shear stress sensor with and without cavity underneath
Micro hot-film shear-stress sensors have been designed and fabricated by surface micromachining technology compatible with IC technology. A poly-silicon strip, 2 µm x 80 µm, is deposited on the top of a thin silicon nitride film and functions as the sensor element. By using sacrificial-layer technique, a cavity (vacuum chamber), 200 x 200 x 2 µm^3, is placed between the silicon nitride film and silicon substrate. This cavity significantly decreases the heat loss to the substrate. For comparison purposes, a sensor structure without a cavity has also been designed and fabricated on the same chip. Theoretical analyses for the two vertical structures with and without a cavity show that the former has a lower frequency response and higher sensitivity than the latter. When the sensor is operated in constant temperature mode, the cut-off frequencies can reach 130 k-Hz and 9 k-Hz respectively for the sensors without and with cavities
- …
