505 research outputs found

    KINETIC ANALYSIS OF THE UPPER EXTREMITY BETWEEN DIFFERENT STANCES IN TENNIS TWO-HANDED BACKHAND

    Get PDF
    INTRODUCTION: Now the tennis players could explore more racket capabilities through the change of racket materials and design. The open stance comes out in modern tennis relative to the traditional square stance. This study was conducted to analyze the upper extremity joint forces and moments between the different stances in advanced and intermediate athletes, who separated from ITN rating system, during two-handed stroke

    Quantum state tomography via non-convex Riemannian gradient descent

    Full text link
    The recovery of an unknown density matrix of large size requires huge computational resources. The recent Factored Gradient Descent (FGD) algorithm and its variants achieved state-of-the-art performance since they could mitigate the dimensionality barrier by utilizing some of the underlying structures of the density matrix. Despite their theoretical guarantee of a linear convergence rate, the convergence in practical scenarios is still slow because the contracting factor of the FGD algorithms depends on the condition number Îș\kappa of the ground truth state. Consequently, the total number of iterations can be as large as O(Îșln⁥(1Δ))O(\sqrt{\kappa}\ln(\frac{1}{\varepsilon})) to achieve the estimation error Δ\varepsilon. In this work, we derive a quantum state tomography scheme that improves the dependence on Îș\kappa to the logarithmic scale; namely, our algorithm could achieve the approximation error Δ\varepsilon in O(ln⁥(1ÎșΔ))O(\ln(\frac{1}{\kappa\varepsilon})) steps. The improvement comes from the application of the non-convex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by numerical results.Comment: Comments are welcome

    Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT

    Get PDF
    Green algae are able to convert solar energy to H2 via the photosynthetic electron transport pathway under certain conditions. Algal hydrogenase (HydA, encoded by HYDA) is in charge of catalyzing the reaction: 2H+ + 2e− ↔ H2 but usually inhibited by O2, a byproduct of photosynthesis. The aim of this study was to knockdown PsbO (encoded by psbO), a subunit concerned with O2 evolution, so that it would lead to HydA induction. The alga, Chlorella sp. DT, was then transformed with short interference RNA antisense-psbO (siRNA-psbO) fragments. The algal mutants were selected by checking for the existence of siRNA-psbO fragments in their genomes and the low amount of PsbO proteins. The HYDA transcription and the HydA expression were observed in the PsbO-knockdown mutants. Under semi-aerobic condition, PsbO-knockdown mutants could photobiologically produce H2 which increased by as much as 10-fold in comparison to the wild type

    Application of 2,3-Naphthalenediamine in Labeling Natural Carbohydrates for Capillary Electrophoresis

    Get PDF
    Neutral and acidic monosaccharide components in <em>Ganoderma lucidum</em> polysaccharide are readily labeled with 2,3-naphthalenediamine, and the resulting saccharide-naphthimidazole (NAIM) derivatives are quantified by capillary electrophoresis (CE) in borate buffer. Using sulfated-α-cyclodextrin as the chiral selector, enantiomers of monosaccharide-NAIMs are resolved on CE in phosphate buffer, allowing a simultaneous determination of the absolute configuration and sugar composition in the mucilage polysaccharide of a medicinal herb<em> Dendrobium</em> <em>huoshanense</em>. Together with the specific enzymatic reactions of various glycoside hydrolases on the NAIM derivatives of glycans, the structures of natural glycans can be deduced from the digestion products identified by CE analysis. Though heparin dissachrides could be successfully derived with the NAIM-labeling method, the heparin derivatives with the same degree of sulfation could not be separated by CE

    THE USE OF MANDAMUS TO COMPEL EDUCATIONAL INSTITUTIONS TO CONFER DEGREES

    Get PDF
    Hispolon is an active phenolic compound of <i>Phellinus igniarius</i>, a mushroom that was recently shown to have antioxidant and anticancer activities in various solid tumors. Here, the molecular mechanisms by which hispolon exerts anticancer effects in acute myeloid leukemia (AML) cells was investigated. The results showed that hispolon suppressed cell proliferation in the various AML cell lines. Furthermore, hispolon effectively induced apoptosis of HL-60 AML cells through caspases-8, -9, and -3 activations and PARP cleavage. Moreover, treatment of HL-60 cells with hispolon induced sustained activation of JNK1/2, and inhibition of JNK by JNK1/2 inhibitor or JNK1/2-specific siRNA significantly abolished the hispolon-induced activation of the caspase-8/-9/-3. In vivo, hispolon significantly reduced tumor growth in mice with HL-60 tumor xenografts. In hispolon-treated tumors, activation of caspase-3 and a decrease in Ki67-positive cells were observed. Our results indicated that hispolon may have the potential to serve as a therapeutic tool to treat AML

    18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck Cancer: a correlation study between suitable uptake value threshold and tumor parameters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To define a suitable threshold setting for gross tumor volume (GTV) when using <sup>18</sup>Fluoro-deoxyglucose positron emission tomography and computed tomogram (PET/CT) for radiotherapy planning in head and neck cancer (HNC).</p> <p>Methods</p> <p>Fifteen HNC patients prospectively received PET/CT simulation for their radiation treatment planning. Biological target volume (BTV) was derived from PET/CT-based GTV of the primary tumor. The BTVs were defined as the isodensity volumes when adjusting different percentage of the maximal standardized uptake value (SUVmax), excluding any artifact from surrounding normal tissues. CT-based primary GTV (C-pGTV) that had been previously defined by radiation oncologists was compared with the BTV. Suitable threshold level (sTL) could be determined when BTV value and its morphology using a certain threshold level was observed to be the best fitness of the C-pGTV. Suitable standardized uptake value (sSUV) was calculated as the sTL multiplied by the SUVmax.</p> <p>Results</p> <p>Our result demonstrated no single sTL or sSUV method could achieve an optimized volumetric match with the C-pGTV. The sTL was 13% to 27% (mean, 19%), whereas the sSUV was 1.64 to 3.98 (mean, 2.46). The sTL was inversely correlated with the SUVmax [sTL = -0.1004 Ln (SUVmax) + 0.4464; R<sup>2 </sup>= 0.81]. The sSUV showed a linear correlation with the SUVmax (sSUV = 0.0842 SUVmax + 1.248; R<sup>2 </sup>= 0.89). The sTL was not associated with the value of C-pGTVs.</p> <p>Conclusion</p> <p>In PET/CT-based BTV for HNC, a suitable threshold or SUV level can be established by correlating with SUVmax rather than using a fixed threshold.</p

    Clinical application of in vivo proton ( 1 H) MR spectroscopy in musculoskeletal tumors

    Get PDF
    Abstract. A technique called in vivo magnetic resonance spectroscopy (MRS) can be performed along with magnetic resonance imaging (MRI) to obtain information about the chemical content of musculoskeletal lesions. This information can be used for several clinical applications, such as improving the accuracy of lesion diagnosis and monitoring the response to cancer therapies. Initial MRS studies of musculoskeletal tumors show promising results, and the technique has been incorporating into the MRI routine protocols. This article introduces 1 H MRS of the musculoskeletal tumors, reviews the literature, discusses current methods and technical issues, and describes applications for treatment monitoring and lesion diagnosis

    Expression of PRDX6 Correlates with Migration and Invasiveness of Colorectal Cancer Cells

    Get PDF
    Background/Aims: Colorectal cancer (CRC) is the third most common type of cancer and the second leading cause of cancer-related deaths worldwide. PRDXs are antioxidant enzymes that play an important role in cell differentiation, proliferation and apoptosis and have diverse functions in malignancy development. However, the mechanism of aberrant overexpression of PRDX6 in CRC remains unclear. Methods: Boyden chamber assay, flow cytometry and a lentiviral shRNA targeting PRDX6 and transient transfection with pCMV-6-PRDX6 plasmid were used to examine the role of PRDX6 in the proliferation capacity and invasiveness of CRC cells. Immunohistochemistry (IHC) with tissue array containing 40 paraffin- embedded CRC tissue specimens and Western blot assays were used to detect target proteins. Results: PRDX6 was significantly up-expressed in different comparisons of metastasis of colorectal adenomas in node-positive CRC (P = 0.03). In in vitro HCT-116, PRDX6 silencing markedly suppressed CRC cell migration and invasiveness while also inducing cell cycle arrest as well as the generation of reactive oxygen species (ROS); specific overexpression of PRDX6 had the opposite effect. Mechanistically, the PRDX6 inactivation displayed decreased levels of PRDX6, N-cadherin, ÎČ-catenin, Vimentin, Slug, Snail and Twist-1 through the activation of the PI3K/ AKT/p38/p50 pathways, but they were also significantly inhibited by PRDX6 transfectants. There was also increased transcriptional activation of dimethylation of histone H3 lysine 4 (H3K4me3) of PRDX6 promoter via the activation of the PI3K/Akt/NFkB pathways. Conclusion: Our findings demonstrated that PRDX6 expression plays a characteristic growth-promoting role in CRC metastasis. This study suggests that PRDX6 may serve as a biomarker of node-positive status and may have a role as an important endogenous regulator of cancer cell tumorigenicity in CRC. PRDX6 may also be an effective therapeutic target
    • 

    corecore