1,115 research outputs found

    A tunable rf SQUID manipulated as flux and phase qubit

    Full text link
    We report on two different manipulation procedures of a tunable rf SQUID. First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.Comment: Proceedings of Nobel Symposium "Qubits for future quantum computers", Goeteborg, Sweden, May 25-28, 2009; to appear in Physica Script

    The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials "beyond graphene" and topological insulators

    Full text link
    Here, we examine the influence of surface chemical reactivity toward ambient gases on the performance of nanodevices based on two-dimensional materials "beyond graphene" and novel topological phases of matter. While surface oxidation in ambient conditions was observed for silicene and phosphorene with subsequent reduction of the mobility of charge carriers, nanodevices with active channels of indium selenide, bismuth chalcogenides and transition-metal dichalcogenides are stable in air. However, air-exposed indium selenide suffers of p-type doping due to water decomposition on Se vacancies, whereas the low mobility of charge carriers in transition-metal dichalcogenides increases the response time of nanodevices. Conversely, bismuth chalcogenides require a control of crystalline quality, which could represent a serious hurdle for up scaling

    Microwave-induced thermal escape in Josephson junctions

    Full text link
    We investigate, by experiments and numerical simulations, thermal activation processes of Josephson tunnel junctions in the presence of microwave radiation. When the applied signal resonates with the Josephson plasma frequency oscillations, the switching current may become multi-valued in a temperature range far exceeding the classical to quantum crossover temperature. Plots of the switching currents traced as a function of the applied signal frequency show very good agreement with the functional forms expected from Josephson plasma frequency dependencies on the bias current. Throughout, numerical simulations of the corresponding thermally driven classical Josephson junction model show very good agreement with the experimental data.Comment: 10 pages and 4 figure

    Static flux bias of a flux qubit using persistent current trapping

    Full text link
    Qubits based on the magnetic flux degree of freedom require a flux bias, whose stability and precision strongly affect the qubit performance, up to a point of forbidding the qubit operation. Moreover, in the perspective of multiqubit systems, it must be possible to flux-bias each qubit independently, hence avoiding the traditional use of externally generated magnetic fields in favour of on-chip techniques that minimize cross-couplings. The solution discussed in this paper exploits a persistent current, trapped in a superconducting circuit integrated on chip that can be inductively coupled with an individual qubit. The circuit does not make use of resistive elements that can be detrimental for the qubit coherence. The trapping procedure allows to control and change stepwise the amount of stored current; after that, the circuit can be completely disconnected from the external sources. We show in a practical case how this works and how to drive the bias circuit at the required value.Comment: 5 figures submitted to Superconductor Science and Technolog

    Multilayer WO3/BiVO4 Photoanodes for Solar-Driven Water Splitting Prepared by RF-Plasma Sputtering

    Get PDF
    A series of WO3, BiVO4 and WO3/BiVO4 heterojunction coatings were deposited on fluorine-doped tin oxide (FTO), by means of reactive radio frequency (RF) plasma (co)sputtering, and tested as photoanodes for water splitting under simulatedAM1.5 G solar light in a three-electrode photoelectrochemical (PEC) cell in a 0.5 M NaSO4 electrolyte solution. The PEC performance and time stability of the heterojunction increases with an increase of the WO3 innermost layer up to 1000 nm. A two-step calcination treatment (600 \ub0C after WO3 deposition followed by 400 \ub0C after BiVO4 deposition) led to a most performing photoanode under back-side irradiation, generating a photocurrent density of 1.7 mA cm-2 at 1.4 V vs. SCE (i.e., two-fold and five-fold higher than that generated by individual WO3 and BiVO4 photoanodes, respectively). The incident photon to current efficiency (IPCE) measurements reveal the presence of two activity regions over the heterojunction with respect to WO3 alone: The PEC efficiency increases due to improved charge carrier separation above 450 nm (i.e., below the WO3 excitation energy), while it decreases below 450 nm (i.e., when both semiconductors are excited) due to electron\u2013hole recombination at the interface of the two semiconductors
    corecore