377 research outputs found

    From radio-quiet to radio-silent: low luminosity Seyfert radio cores

    Full text link
    A strong effort has been devoted to understand the physical origin of radio emission from low-luminosity AGN (LLAGN), but a comprehensive picture is still missing. We used high-resolution (\le1 arcsec), multi-frequency (1.5, 5.5, 9 and 14 GHz) NSF's Karl G. Jansky Very Large Array (VLA) observations to characterise the state of the nuclear region of ten Seyfert nuclei, which are the faintest members of a complete, distance-limited sample of 28 sources. With the sensitivity and resolution guaranteed by the VLA-A configuration, we measured radio emission for six sources (NGC3185, NGC3941, NGC4477, NGC4639, NGC4698 and NGC4725), while for the remaining four (NGC0676, NGC1058, NGC2685 and NGC3486) we put upper limits at tens uJy/beam level, below the previous 0.12 mJy/beam level of Ho&Ulvestad (2001), corresponding to luminosities down to L1019\le10^{19} W/Hz at 1.5 GHz for the highest RMS observation. Two sources, NGC4639 and NGC4698, exhibit spectral slopes compatible with inverted spectra (α\alpha\le0, SνναS_{\nu}\,\propto\,{\nu}^{-\alpha}), hint for radio emission from an optically-thick core, while NGC4477 exhibits a steep (+0.52±\pm0.09) slope. The detected sources are mainly compact on scales \le arcseconds, predominantly unresolved, except NGC3185 and NGC3941, in which the resolved radio emission could be associated to star-formation processes. A significant X-ray - radio luminosities correlation is extended down to very low luminosities, with slope consistent with inefficient accretion, expected at such low Eddington ratios. Such sources will be one of the dominant Square Kilometre Array (SKA) population, allowing a deeper understanding of the physics underlying such faint AGN.Comment: accepted for publication on MNRAS (19 pages, 26 figures

    Hard - X-rays selected Active Galactic Nuclei. I. A radio view at high-frequencies

    Full text link
    A thorough study of radio emission in Active Galactic Nuclei (AGN) is of fundamental importance to understand the physical mechanisms responsible for the emission and the interplay between accretion and ejection processes. High frequency radio observations can target the nuclear contribution of smaller emitting regions and are less affected by absorption. We present JVLA 22 and 45 GHz observations of 16 nearby (0.003\lez\le0.3) hard - X-rays selected AGN at the (sub)-kpc scale with tens uJy beam1^{-1} sensitivity. We detected 15/16 sources, with flux densities ranging from hundreds uJy beam1^{-1} to tens Jy (specific luminosities from \sim1020^{20} to \sim1025WHz1^{25}\,W\,Hz^{-1} at 22 GHz). All detected sources host a compact core, with 8 being core-dominated at either frequencies, the others exhibiting also extended structures. Spectral indices range from steep to flat/inverted. We interpret this evidence as either due to a core+jet system (6/15), a core accompanied by surrounding star formation (1/15), to a jet oriented close to the line of sight (3/15), to emission from a corona or the base of a jet (1/15), although there might be degeneracies between different processes. Four sources require more data to shed light on their nature. We conclude that, at these frequencies, extended, optically-thin components are present together with the flat-spectrum core. The LR/LX105{L_R}/{L_X}\sim10^{-5} relation is roughly followed, indicating a possible contribution to radio emission from a hot corona. A weakly significant correlation between radio core (22 and 45 GHz) and X-rays luminosities is discussed in the light of an accretion-ejection framework.Comment: Accepted for publication on MNRA

    Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study

    Get PDF
    We studied the anatomy of the fault system where the 2009 L’Aquila earthquake (MW 6.1) nucleated by means of ~64 k high-precision earthquake locations spanning 1 year. Data were analyzed by combining an automatic picking procedure for P and S waves, together with cross-correlation and double-difference location methods reaching a completeness magnitude for the catalogue equal to 0.7 including 425 clusters of similar earthquakes. The fault system is composed by two major faults: the high-angle L’Aquila fault and the listric Campotosto fault, both located in the first 10 km of the upper crust. We detect an extraordinary degree of detail in the anatomy of the single fault segments resembling the degree of complexity observed by field geologists on fault outcrops. We observe multiple antithetic and synthetic fault segments tens of meters long in both the hanging wall and footwall along with bends and cross fault intersections along the main fault and fault splays. The width of the L’Aquila fault zone varies along strike from 0.3 km where the fault exhibits the simplest geometry and experienced peaks in the slip distribution, up to 1.5 km at the fault tips with an increase in the geometrical complexity. These characteristics, similar to damage zone properties of natural faults, underline the key role of aftershocks in fault growth and co-seismic rupture propagation processes. Additionally, we interpret the persistent nucleation of similar events at the seismicity cutoff depth as the presence of a rheological (i.e., creeping) discontinuity explaining how normal faults detach at depth

    Fault structure and slip localization in carbonate-bearing normal faults: An example from the Northern Apennines of Italy

    Get PDF
    Carbonate-bearing normal faults are important structures for controlling fluid flow and seismogenesis within the brittle upper crust. Numerous studies have tried to characterize fault zone structure and earthquake slip processes along carbonate-bearing faults. However, due to the different scales of investigation, these studies are not often integrated to provide a comprehensive fault image. Here we present a multi-scale investigation of a normal fault exhumed from seismogenic depths. The fault extends for a length of 10 km with a maximum width of about 1.5 km and consists of 5 sub-parallel and interacting segments. The maximum displacement (370e650 m) of each fault segment is partitioned along sub-parallel slipping zones extending for a total width of about 50 m. Each slipping zone is characterized by slipping surfaces exhibiting different slip plane phenomena. Fault rock development is controlled by the protolith lithology. In massive limestone, moving away from the slip surface, we observe a thin layer (<2 cm) of ultracataclasite, cataclasite (2e10 cm) and fault breccia. In marly limestone, the fault rock consists of a cataclasite with hydrofractures and smectite-rich pressure solution seams. At the micro-nanoscale, the slip surface consists of a continuous and thin (<300 mm) layer composed of coarse calcite grains (~5e20 mm in size) associated with sub-micrometer grains showing fading grain boundaries, voids and/or vesicles, and suggesting thermal decomposition processes. Micrometer-sized calcite crystals show nanoscale polysynthetic twinning affected by the occurrence of subgrain boundaries and polygonalized nanostructures. Investigations at the kilometres-tens of meter scale provide fault images that can be directly compared with high-resolution seismological data and when combined can be used to develop a comprehensive characterization of seismically active fault structures in carbonate lithologies. Micro and nanoscale investigations along the principal slipping zone suggest that different deformation processes, including plastic deformation and thermal decomposition, were active during seismic slip

    Zn-induced interactions between SARS-CoV-2 orf7a and BST2/Tetherin

    Get PDF
    We present in this work a first X-ray Absorption Spectroscopy study of the interactions of Zn with human BST2/tetherin and SARS-CoV-2 orf7a proteins as well as with some of their complexes. The analysis of the XANES region of the measured spectra shows that Zn binds to BST2, as well as to orf7a, thus resulting in the formation of BST2-orf7a complexes. This structural information confirms the the conjecture, recently put forward by some of the present Authors, according to which the accessory orf7a (and possibly also orf8) viral protein are capable of interfering with the BST2 antiviral activity. Our explanation for this behavior is that, when BST2 gets in contact with Zn bound to the orf7a Cys(15) ligand, it has the ability of displacing the metal owing to the creation of a new disulfide bridge across the two proteins. The formation of this BST2-orf7a complex destabilizes BST2 dimerization, thus impairing the antiviral activity of the latter

    A discovery of young radio sources in the cores of giant radio galaxies selected at hard X-rays

    Get PDF
    Giant Radio Galaxies (GRG) are the largest single entities in the Universe, having a projected linear size exceeding 0.7 Mpc, which implies that they are also quite old objects. They are not common, representing a fraction of only about 6% in samples of bright radio galaxies. While a census of about 300 of these objects has been built in the past years, still no light has been shed on the conditions necessary to allow such an exceptional growth, whether of environmental nature or linked to the inner accretion properties. Recent studies found that samples of radio galaxies selected from hard X-ray AGN catalogs selected from INTEGRAL/IBIS and Swift/BAT (thus at energies >20 keV) present a fraction of GRG four times larger than what found in radio-selected samples. We present radio observations of 15 nuclei of hard X-ray selected GRG, finding for the first time a large fraction (61%) of young radio sources at the center of Mpc-scale structures. Being at the center of GRG, these young nuclei may be undergoing a restarting activity episode, suggesting a link between the detected hard X-ray emission - due to the ongoing accretion - and the reactivation of the jets.Comment: Accepted for publication on Ap

    The role of Zn ions in the interaction between SARS-CoV-2 orf7a protein and BST2/tetherin

    Get PDF
    In this paper, we provide evidence that Zn2+ ions play a role in the SARS-CoV-2 virus strategy to escape the immune response mediated by the BST2-tetherin host protein. This conclusion is based on sequence analysis and molecular dynamics simulations as well as X-ray absorption experiments [1]

    The role of Zn ions in the interaction between SARS-CoV-2 orf7a protein and BST2/tetherin

    Get PDF
    In this paper, we provide evidence that Zn2+ ions play a role in the SARS-CoV-2 virus strategy to escape the immune response mediated by the BST2-tetherin host protein. This conclusion is based on sequence analysis and molecular dynamics simulations as well as X-ray absorption experiments

    Metal ion binding in wild-type and mutated frataxin: a stability study

    Get PDF
    This work studies the stability of wild-type frataxin and some of its variants found in cancer tissues upon Co2+ binding. Although the physiologically involved metal ion in the frataxin enzymatic activity is Fe2+, as it is customarily done, Co2+ is most often used in experiments because Fe2+ is extremely unstable owing to the fast oxidation reaction Fe2+ → Fe3+. Protein stability is monitored following the conformational changes induced by Co2+ binding as measured by circular dichroism, fluorescence spectroscopy, and melting temperature measurements. The stability ranking among the wild-type frataxin and its variants obtained in this way is confirmed by a detailed comparative analysis of the XAS spectra of the metal-protein complex at the Co K-edge. In particular, a fit to the EXAFS region of the spectrum allows positively identifying the frataxin acidic ridge as the most likely location of the metal-binding sites. Furthermore, we can explain the surprising feature emerging from a detailed analysis of the XANES region of the spectrum, showing that the longer 81-210 frataxin fragment has a smaller propensity for Co2+ binding than the shorter 90-210 one. This fact is explained by the peculiar role of the N-terminal disordered tail in modulating the protein ability to interact with the metal
    corecore