45 research outputs found

    Determination of total vanadium and vanadium(V) in groundwater from Mt. Etna and estimate of daily intake of vanadium(V) through drinking water.

    Get PDF
    Vanadium(V) can be found in natural waters in the form of V(IV) and V(V) species, which have different biological properties and toxicity. The purpose of this study was to determine the concentrations of total V and V(V) in groundwater from the area of Mt. Etna and to assess the estimated daily intake (EDI) of V(V) of adults and children through drinking water. Water was sampled monthly at 21 sites in 2011. Total vanadium was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and speciation by ion chromatography-ICP-MS (IC-ICP-MS). The concentration of V(V) species ranged from 62.8 to 98.9% of total V, with significantly higher concentrations in samples from the S/SW slope of Mt. Etna. The annual mean concentrations of total V exceeded the Italian legal limit of 140 μg/L at four sites on the S/SW slope. In the absence of thresholds for V(V) intake, only the Environmental Protection Agency (EPA) has calculated a reference dose. Children's EDI of V(V) at the sites with the higher V concentrations exceeded EPA thresholds (9 μg/kg/day). In particular, we found in Camporotondo, Mascalucia, Ragalna and San Pietro Clarenza sites children's EDIs of 11, 9.3, 11 and 9.9, respectively. The EDI of V(V) was significantly higher than the literature range (0.09–0.34 μg/kg/day)

    The Relevance of Microcystin Monitoring in Dialysis Centers of Sicilians Cities: An Environmental Study

    Get PDF
    Background: Sicilian surface basins are among the most important water supply resources available on the island. They are often affected by harmful cyanobacteria blooms as Planktothrix rubescens and Microcystis aeruginosa. Since dialysates are produced using network water, they could contain cyanotoxins. No study has been conducted yet to evaluate the removal efficiency of osmotic systems for cyanotoxins in abnormal conditions at room temperatures of about 40°C. The aim of this study was to monitor the presence of microcystins in Sicilian dialysis center, network waters and, finally, dialysates produced from these waters in an Agrigento dialysis unit where environmental conditions are favorable for algal bloom. Methods: This clinic normally receives surface water from artificial basins, where several times, traces of cyanobacteria have been detected. Moreover, dialysates and underground supply waters of a clinic in Catania were also sampled as control. Samplings were performed in summer 2018, when room temperatures were above 38 °C. A total of 40 samples were analyzed by ELISA assay. Results: Results of our monitoring highlighted concentrations of MCs in waters of several basins among LOD - 155 ng/L, lower than WHO reference value for drinking waters (1,0 µg/L), that decrease up to undetectable levels whereas no MC contamination was detected both in supply waters and dialysates. Conclusion: Although our first set of data outcomes seem to be quite comforting, an improvement of law and a complete census of the water supplies of dialysate centers would be ideal

    Dietary habits and thyroid cancer risk: A hospital-based case-control study in Sicily (South Italy).

    Get PDF
    Abstract Several studies have investigated the role of diet as a risk and/or protective factor against thyroid cancer, both considering individual foods, groups of foods and dietary patterns, but the results are not consistent. The aim of the study was to investigate the relationship between dietary habits and thyroid cancer. Cases and controls were recruited at the University Hospital "G. Rodolico" of Catania. The dietary habits were defined through the "Lifestyle Assessment Questionnaire". The frequency of consumption of each food item was reported on a 4-level scale (never, one time a week, 2–3 times a week, every day of the week). We computed the odds ratios (ORs) of thyroid cancer and the corresponding 95% confidence intervals (CIs) according to the median of control group daily intake of each food group, using multiple logistic regression models adjusted for major confounding factors. Starchy foods (OR = 1.39, 95% CI 0.83–2.32), sweets (OR = 1.39, 95% CI 0.81–2.40) and products rich in salt and fat showed a positive association with thyroid cancer risk. Conversely, an inverse association with disease risk was found for vegetables (cruciferous OR = 0.30, 95% CI 0.10–0.92, non cruciferous OR = 0.57 (0.20–1.57) milk and dairy products (OR = 0.68, 95% CI 0.40–1.13) and seafood (OR = 0.68, 95% CI 0.34–1.22). An increased risk was observed for consumption of iodized salts (OR 2.06, 95% CI 1.21–3.51), tea (OR = 1.42, 95% CI 0.84–2.41) and coca-cola (OR = 3.08, 95% CI 1.53–6.20). Finally, our results confirm the protective effect of a daily water intake of 1–2 L, but unfortunately this quantity is usually consumed by about a quarter of the sample. Dietary habits appear to modify the risk of thyroid carcinoma. A diet with a limited consumption of starchy foods, products rich in salt, fat and sugar and a higher consumption of, cruciferous/non-cruciferous vegetables, milk and dairy products and seafood could be protective towards thyroid cancer. Moreover, the water intake should be increased and the actual need to consume iodized salt should be verified for each subject/area. These results warrant further investigations and, if confirmed, they might have important public health implications for the reduction of thyroid cancer through the improvement of dietary habits

    Heavy Metals Concentrations in Fish from Sicily (Mediterranean Sea) and Evaluation of Possible Health Risks to Consumers

    Get PDF
    Cadmium, lead, mercury and chromium concentrations in fish muscle tissue taken from various Sicilian areas were detected. Fish caught in Siracusa, nearby a petrochemical industrial area, were more contaminated by cadmium, lead and chromium (respectively 0.366, 0.32, 0.72 μg/g) than those from the other sites. In the Sicily Channel, we found the highest bioaccumulation of mercury (0.31 μg/g). Although some metals concentrations exceed the limits set by the European regulation, the estimated weekly intake was below the Provisional Tolerable Weekly Intake established by the European Food and Safety Authority, and the Target Hazard Quotient values indicate that there is no carcinogenic risk for humans

    Sometimes Sperm Whales (Physeter macrocephalus) Cannot Find Their Way Back to the High Seas: A Multidisciplinary Study on a Mass Stranding

    Get PDF
    BACKGROUND: Mass strandings of sperm whales (Physeter macrocephalus) remain peculiar and rather unexplained events, which rarely occur in the Mediterranean Sea. Solar cycles and related changes in the geomagnetic field, variations in water temperature and weather conditions, coast geographical features and human activities have been proposed as possible causes. In December 2009, a pod of seven male sperm whales stranded along the Adriatic coast of Southern Italy. This is the sixth instance from 1555 in this basin. METHODOLOGY/PRINCIPAL FINDINGS: Complete necropsies were performed on three whales whose bodies were in good condition, carrying out on sampled tissues histopathology, virology, bacteriology, parasitology, and screening of veins looking for gas emboli. Furthermore, samples for age determination, genetic studies, gastric content evaluation, stable isotopes and toxicology were taken from all the seven specimens. The animals were part of the same group and determined by genetic and photo-identification to be part of the Mediterranean population. Causes of death did not include biological agents, or the "gas and fat embolic syndrome", associated with direct sonar exposure. Environmental pollutant tissue concentrations were relatively high, in particular organochlorinated xenobiotics. Gastric content and morphologic tissue examinations showed a prolonged starvation, which likely caused, at its turn, the mobilization of lipophilic contaminants from the adipose tissue. Chemical compounds subsequently entered the blood circulation and may have impaired immune and nervous functions. CONCLUSIONS/SIGNIFICANCE: A multi-factorial cause underlying this sperm whales' mass stranding is proposed herein based upon the results of postmortem investigations as well as of the detailed analyses of the geographical and historical background. The seven sperm whales took the same "wrong way" into the Adriatic Sea, a potentially dangerous trap for Mediterranean sperm whales. Seismic surveys should be also regarded as potential co-factors, even if no evidence of direct impact has been detected

    DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO2-NPs) and the Food Additive E171 Toxicity in Colon Cancer Cells: HCT-116 and Caco-2

    No full text
    This study investigated the DNA damage and apoptosis in colon cancer cells HCT-116 and Caco-2 induced by engineered titanium dioxide nanoparticles (TiO2-NPs) (60 nm) and titanium dioxide food additive E171. MTT assays showed that both chemical forms significantly reduced cancer cell viability in a dose-dependent manner. In particular the food additive E171 induced a pronounced inhibitory effect on the growth of HCT-116 and Caco-2 cell lines (E171 IC50: 3.45 mg/L for HTC-116 and 1.88 mg/L Caco-2; TiO2-NPs 60 nm IC50: 41.1 mg/L for HTC-116 and 14.3 mg/L for Caco-2). A low level of genotoxicity was observed in Caco-2 cells, especially when treated with TiO2 60 nm. Western blot analysis showed that HCT116 and Caco-2 treated cells did not overexpress apoptotic markers such as cleaved Caspase 3 and cleaved Parp. Moreover, further analysis by quantitative real-time PCR (qRT-PCR) showed that TiO2-NPs and E171 did not promote the expression of Bax or downregulation of Bcl-2, nor did they increase the Bax/Bcl-2 ratio. The assay data provide clear evidence that TiO2 can cause DNA damage but does not induce apoptosis or decrease long-term cell proliferation. In addition, the results show that E171 has a slightly higher level of cytotoxicity and genotoxicity. This suggests that exposure to E171 may be hazardous to health and that further research on biological effects is needed to promote safer practices in the use of this compound

    Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure

    No full text
    This study provides a first insight on the chemical characterization and quantification of silver nanoparticles (AgNPs) and dissolved Ag in processed canned seafood products, where food-grade edible silver (E174) is not intentionally added nor is the nanoparticle contained in the food contact material. The aim was to evaluate the bioaccumulation potential of AgNPs and to contribute to the assessment of AgNPs and ionic Ag human dietary intake from processed seafood. It is known how seafood, and in particular pelagic fish, is a precious nutritional source of unsaturated fatty acids, protein, and different micronutrients. Nevertheless, it may cause possible health problems due to the intake of toxic compounds coming from environmental pollution. Among emerging contaminants, AgNPs are widely applied in several fields such as biomedicine, pharmaceutical, food industry, health care, drug-gene delivery, environmental study, water treatments, and many others, although its primary application is in accordance with its antimicrobial property. As a consequence, AgNPs are discharged into the aquatic environment, where the colloidal stability of these NPs is altered by chemical and physical environmental parameters. Its toxicity was demonstrated in in-vitro and in-vivo studies, although some findings are controversial because toxicity depends by several factors such as size, concentration, chemical composition, surface charge, Ag+ ions released, and hydrophobicity. The new emerging technique called single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied, which allows the determination of nanoparticle number-based concentration and size distribution, as well as the dissolved element. Our findings highlighted comparable mean sizes across all species analysed, although AgNPs concentrations partly follow a trophic level-dependent trend. The low mean size detected could be of human health concern, since, smaller is the diameter higher is the toxicity. Dietary intake from a meal calculated for adults and children seems to be very low. Although seafood consumption represents only a small part of the human total diet, our findings represent a first important step to understand the AgNPs dietary exposure of the human population. Further studies are needed to characterize and quantify AgNPs in a large number of food items, both processing and not, and where AgNPs are added at the industrial level. They will provide a realistic exposure assessment, useful to understand if AgNPs toxicity levels observed in literature are close to those estimable through food consumption and implement data useful for risk assessors in developing AgNPs provisional tolerable daily intake
    corecore