32 research outputs found

    3D roof model generation and analysis supporting solar system positioning

    Get PDF
    Given the growing needs of renewable energy in urban areas, identifying suitable installation locations for solar systems is increasingly important. Existing energetic cadastres have often a limited level of detail in the analysed geometry, which needs to be rapidly updated following any changes in the buildings. The required 3D data can be generated by photogrammetry techniques and Structure-from-Motion (SfM) software. In this paper, the method was tested employing Digital Mapping Camera images (virtual images), on a case study in north-west of Italy. The results were analysed for assessing the reliability of the DSM produced by SfM methods, to be employed in solar radiation analyses. The problem of this kind of automatic 3D modelling could be sometimes the excessive detail in reconstructing the geometry of the roofs or the possible noise. The results are managed and analysed in Geographical Information System (GIS) tools. For the whole workflow, proprietary and free open source software (OSS) were used. The problems and limitations were investigated in order to evaluate and confirm the reliability and cost effectiveness of the described methods

    Identification of metabolites from type III F2-isoprostane diastereoisomers by mass spectrometry.

    Get PDF
    F 2 -isoprostanes (F 2 -iPs) are prostaglandin (PG)-like products of non-enzymatic free radical-catalyzed peroxida- tion of arachidonic acid that are now widely used as indices of lipid peroxidation in vivo. Knowledge of the metabolic fate of F 2 -iPs in vivo is still scant, despite its importance for defining their overall formation and biological effects in vivo. Type III F 2 -iPs, which are diastereoisomers of cyclo- oxygenase-derived PGF 2 a , may be metabolized through the pathways of PG metabolism. We therefore studied the in vitro metabolism of eight synthetic Type III F 2 -iP diastereo- isomers in comparison with PGF 2 a . We used gas chroma- tography-mass spectrometry and high performance liquid chromatography-electrospray-tandem mass spectrometry for structural identification of metabolites formed after in- cubation of the various compounds with isolated rat hepato- cytes. PGF 2 a was metabolized to several known products, resulting from a combination of b -oxidation, reduction of D 5 and/or D 13 double bonds, and 15-OH oxidation, plus other novel products deriving from conjugation with tau- rine of PGF 2 a and its metabolites. Of the eight F 2 -iP diaste- reoisomers, some were processed similarly to PGF 2 a , whereas others showed peculiar metabolic profiles according to spe- cific stereochemical configurations. These data represent the first evidence of biodegradation of selected Type III F 2 -iP isomers other than 8- epi- PGF 2 a , through known and novel pathways of PGF 2 a metabolism. The analytical characterization of these products may serve as a basis for identifying the most significant products formed in vivo. — Chiabrando, C., C. Rivalta, R. Bagnati, A. Valagussa, T. Durand, A. Guy, P. Villa, J-C. Rossi, and R. Fanelli. Identifi- cation of metabolites from Type III F 2 -isoprostane diastereo- isomers by mass spectrometry. J. Lipid Res. 2002. 43: 495-509

    Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse

    Get PDF
    BACKGROUND: Cocaine use seems to be increasing in some urban areas worldwide, but it is not straightforward to determine the real extent of this phenomenon. Trends in drug abuse are currently estimated indirectly, mainly by large-scale social, medical, and crime statistics that may be biased or too generic. We thus tested a more direct approach based on 'field' evidence of cocaine use by the general population. METHODS: Cocaine and its main urinary metabolite (benzoylecgonine, BE) were measured by mass spectrometry in water samples collected from the River Po and urban waste water treatment plants of medium-size Italian cities. Drug concentration, water flow rate, and population at each site were used to estimate local cocaine consumption. RESULTS: We showed that cocaine and BE are present, and measurable, in surface waters of populated areas. The largest Italian river, the Po, with a five-million people catchment basin, steadily carried the equivalent of about 4 kg cocaine per day. This would imply an average daily use of at least 27 ± 5 doses (100 mg each) for every 1000 young adults, an estimate that greatly exceeds official national figures. Data from waste water treatment plants serving medium-size Italian cities were consistent with this figure. CONCLUSION: This paper shows for the first time that an illicit drug, cocaine, is present in the aquatic environment, namely untreated urban waste water and a major river. We used environmental cocaine levels for estimating collective consumption of the drug, an approach with the unique potential ability to monitor local drug abuse trends in real time, while preserving the anonymity of individuals. The method tested here – in principle extendable to other drugs of abuse – might be further refined to become a standardized, objective tool for monitoring drug abuse

    Local site effects and incremental damage of buildings during the 2016 Central Italy earthquake sequence

    Get PDF
    The Central Italy earthquake sequence initiated on 24 August 2016 with a moment magnitude M6.1 event followed by a M5.9 and a M6.5 earthquake, that caused significant damage and loss of life in the town of Amatrice and other nearby villages and hamlets. The significance of this sequence led to a major international reconnaissance effort to thoroughly examine the effects of this disaster. Specifically, this paper presents evidences of strong local site effects (i.e., amplification of seismic waves due to stratigraphic and topographic effects that leads to damage concentration in certain areas). It also examines the damage patterns observed along the entire sequence of events in association with the spatial distribution of ground motion intensity with emphasis on the clearly distinct performance of reinforced concrete and masonry structures under multiple excitations. The paper concludes with a critical assessment of past retrofit measures efficiency and a series of lessons learned as per the behavior of structures to a sequence of strong earthquake events

    Long-term vitamin E supplementation fails to reduce lipid peroxidation in people at cardiovascular risk: analysis of underlying factors

    Get PDF
    BACKGROUND: Antioxidant supplementation with vitamin E had no effect in the prevention of cardiovascular diseases (CVD) in three recent large, randomized clinical trials. In order to reassess critically the role of vitamin E in CVD prevention, it is important to establish whether these results are related to a lack of antioxidant action. METHODS: We examined the in vivo antioxidant effect of vitamin E (300 mg/day for about three years) in 144 participants in the Primary Prevention Project (females and males, aged ≥ 50 y, with at least one major CV risk factor, but no history of CVD). Urinary 8-epi-PGF(2α) (isoprostane F(2α)-III or 15-F(2t)-isoP), a validated biomarker of lipid peroxidation, was measured by mass spectrometry. RESULTS: Urinary excretion of 8-epi-PGF(2α) [pg/mg creatinine, median (range)] was 141 (67–498) in treated and 148 (76–561) in untreated subjects (p = 0.10). Taking into account possible confounding variables, multiple regression analysis confirmed that vitamin E had no significant effect on this biomarker. Levels of 8-epi-PGF(2α) were in the normal range for most subjects, except smokers and those with uncontrolled blood pressure or hyperglycemia. CONCLUSIONS: Prolonged vitamin E supplementation did not reduce lipid peroxidation in subjects with major cardiovascular risk factors. The observation that the rate of lipid peroxidation was near normal in a large proportion of subjects may help explain why vitamin E was not effective as an antioxidant in the PPP study and was ineffective for CVD prevention in large scale trials

    Engineering Reconnaissance Following the October 2016 Central Italy Earthquakes - Version 2

    Get PDF
    Between August and November 2016, three major earthquake events occurred in Central Italy. The first event, with M6.1, took place on 24 August 2016, the second (M5.9) on 26 October, and the third (M6.5) on 30 October 2016. Each event was followed by numerous aftershocks. As shown in Figure 1.1, this earthquake sequence occurred in a gap between two earlier damaging events, the 1997 M6.1 Umbria-Marche earthquake to the north-west and the 2009 M6.1 L’Aquila earthquake to the south-east. This gap had been previously recognized as a zone of elevated risk (GdL INGV sul terremoto di Amatrice, 2016). These events occurred along the spine of the Apennine Mountain range on normal faults and had rake angles ranging from -80 to -100 deg, which corresponds to normal faulting. Each of these events produced substantial damage to local towns and villages. The 24 August event caused massive damages to the following villages: Arquata del Tronto, Accumoli, Amatrice, and Pescara del Tronto. In total, there were 299 fatalities (www.ilgiornale.it), generally from collapses of unreinforced masonry dwellings. The October events caused significant new damage in the villages of Visso, Ussita, and Norcia, although they did not produce fatalities, since the area had largely been evacuated. The NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) association, with co-funding from the B. John Garrick Institute for the Risk Sciences at UCLA and the NSF I/UCRC Center for Unmanned Aircraft Systems (C-UAS) at BYU, mobilized a US-based team to the area in two main phases: (1) following the 24 August event, from early September to early October 2016, and (2) following the October events, between the end of November and the beginning of December 2016. The US team worked in close collaboration with Italian researchers organized under the auspices of the Italian Geotechnical Society, the Italian Center for Seismic Microzonation and its Applications, the Consortium ReLUIS, Centre of Competence of Department of Civil Protection and the DIsaster RECovery Team of Politecnico di Torino. The objective of the Italy-US GEER team was to collect and document perishable data that is essential to advance knowledge of earthquake effects, which ultimately leads to improved procedures for characterization and mitigation of seismic risk. The Italy-US GEER team was multi-disciplinary, with expertise in geology, seismology, geomatics, geotechnical engineering, and structural engineering. The composition of the team was largely the same for the two mobilizations, particularly on the Italian side. Our approach was to combine traditional reconnaissance activities of on-ground recording and mapping of field conditions, with advanced imaging and damage detection routines enabled by state-of-the-art geomatics technology. GEER coordinated its reconnaissance activities with those of the Earthquake Engineering Research Institute (EERI), although the EERI mobilization to the October events was delayed and remains pending as of this writing (April 2017). For the August event reconnaissance, EERI focused on emergency response and recovery, in combination with documenting the effectiveness of public policies related to seismic retrofit. As such, GEER had responsibility for documenting structural damage patterns in addition to geotechnical effects. This report is focused on the reconnaissance activities performed following the October 2016 events. More information about the GEER reconnaissance activities and main findings following the 24 August 2016 event, can be found in GEER (2016). The objective of this document is to provide a summary of our findings, with an emphasis of documentation of data. In general, we do not seek to interpret data, but rather to present it as thoroughly as practical. Moreover, we minimize the presentation of background information already given in GEER (2016), so that the focus is on the effects of the October events. As such, this report and GEER (2016) are inseparable companion documents. Similar to reconnaissance activities following the 24 August 2016 event, the GEER team investigated earthquake effects on slopes, villages, and major infrastructure. Figure 1.2 shows the most strongly affected region and locations described subsequently pertaining to: 1. Surface fault rupture; 2. Recorded ground motions; 3. Landslides and rockfalls; 4. Mud volcanoes; 5. Investigated bridge structures; 6. Villages and hamlets for which mapping of building performance was performed

    Reconnaissance of 2016 Central Italy Earthquake Sequence

    Get PDF
    The Central Italy earthquake sequence nominally began on 24 August 2016 with a M6.1 event on a normal fault that produced devastating effects in the town of Amatrice and several nearby villages and hamlets. A major international response was undertaken to record the effects of this disaster, including surface faulting, ground motions, landslides, and damage patterns to structures. This work targeted the development of high-value case histories useful to future research. Subsequent events in October 2016 exacerbated the damage in previously affected areas and caused damage to new areas in the north, particularly the relatively large town of Norcia. Additional reconnaissance after a M6.5 event on 30 October 2016 documented and mapped several large landslide features and increased damage states for structures in villages and hamlets throughout the region. This paper provides an overview of the reconnaissance activities undertaken to document and map these and other effects, and highlights valuable lessons learned regarding faulting and ground motions, engineering effects, and emergency response to this disaster

    In-depth glycoproteomic characterization of γ-conglutin by high-resolution accurate mass spectrometry.

    Get PDF
    The molecular characterization of bioactive food components is necessary for understanding the mechanisms of their beneficial or detrimental effects on human health. This study focused on γ-conglutin, a well-known lupin seed N-glycoprotein with health-promoting properties and controversial allergenic potential. Given the importance of N-glycosylation for the functional and structural characteristics of proteins, we studied the purified protein by a mass spectrometry-based glycoproteomic approach able to identify the structure, micro-heterogeneity and attachment site of the bound N-glycan(s), and to provide extensive coverage of the protein sequence. The peptide/N-glycopeptide mixtures generated by enzymatic digestion (with or without N-deglycosylation) were analyzed by high-resolution accurate mass liquid chromatography-multi-stage mass spectrometry. The four main micro-heterogeneous variants of the single N-glycan bound to γ-conglutin were identified as Man2(Xyl) (Fuc) GlcNAc2, Man3(Xyl) (Fuc) GlcNAc2, GlcNAcMan3(Xyl) (Fuc) GlcNAc2 and GlcNAc 2Man3(Xyl) (Fuc) GlcNAc2. These carry both core β1,2-xylose and core α1-3-fucose (well known Cross-Reactive Carbohydrate Determinants), but corresponding fucose-free variants were also identified as minor components. The N-glycan was proven to reside on Asn131, one of the two potential N-glycosylation sites. The extensive coverage of the γ-conglutin amino acid sequence suggested three alternative N-termini of the small subunit, that were later confirmed by direct-infusion Orbitrap mass spectrometry analysis of the intact subunit
    corecore