956 research outputs found
The role of potassium orbitals in the metallic behavior of K3picene
Detailed electronic structure calculations of picene clusters doped by
potassium modeling the crystalline K3picene structure show that while two
electrons are completely transferred from potassium atoms to the LUMO of
pristine picene, the third one remains closely attached to both material
components. Multiconfigurational analysis is necessary to show that many
structures of almost degenerate total energies compete to define the cluster
ground state. Our results prove that the 4s orbital of potassium should be
included in any interaction model describing the material. We propose a quarter
filled two orbital model as the most simple model capable of describing the
electronic structure of K-intercalated picene. Precise solutions obtained by a
development of Lanczos method show low energy electronic excitations involving
orbitals located at different positions. Consequently, metallic transport is
possible in spite of the clear dominance of interaction over hopping.Comment: 12 pages, 10 figures (6 of them really heavy
Kondo effect of an adsorbed cobalt phthalocyanine (CoPc) molecule: the role of quantum interference
A recent experimental study showed that, distorting a CoPc molecule adsorbed
on a Au(111) surface, a Kondo effect is induced with a temperature higher than
200 K. We examine a model in which an atom with strong Coulomb repulsion (Co)
is surrounded by four atoms on a square (molecule lobes), and two atoms above
and below it representing the apex of the STM tip and an atom on the gold
surface (all with a single, half-filled, atomic orbital). The Hamiltonian is
solved exactly for the isolated cluster, and, after connecting the leads (STM
tip and gold), the conductance is calculated by standard techniques. Quantum
interference prevents the existence of the Kondo effect when the orbitals on
the square do not interact (undistorted molecule); the Kondo resonance shows up
after switching on that interaction. The weight of the Kondo resonance is
controlled by the interplay of couplings to the STM tip and the gold surface,
and between the molecule lobes.Comment: 5 pages, 3 figura
Conductance through an array of quantum dots
We propose a simple approach to study the conductance through an array of
interacting quantum dots, weakly coupled to metallic leads. Using a mapping to
an effective site which describes the low-lying excitations and a slave-boson
representation in the saddle-point approximation, we calculated the conductance
through the system. Explicit results are presented for N=1 and N=3: a linear
array and an isosceles triangle. For N=1 in the Kondo limit, the results are in
very good agreement with previous results obtained with numerical
renormalization group (NRG). In the case of the linear trimer for odd , when
the parameters are such that electron-hole symmetry is induced, we obtain
perfect conductance . The validity of the approach is discussed in
detail.Comment: to appear in Phys. Rev.
Magnetic molecules created by hydrogenation of Polycyclic Aromatic Hydrocarbons
Present routes to produce magnetic organic-based materials adopt a common
strategy: the use of magnetic species (atoms, polyradicals, etc.) as building
blocks. We explore an alternative approach which consists of selective
hydrogenation of Polycyclic Aromatic Hydrocarbons. Self-Consistent-Field (SCF)
(Hartree-Fock and DFT) and multi-configurational (CISD and MCSCF) calculations
on coronene and corannulene, both hexa-hydrogenated, show that the formation of
stable high spin species is possible. The spin of the ground states is
discussed in terms of the Hund rule and Lieb's theorem for bipartite lattices
(alternant hydrocarbons in this case). This proposal opens a new door to
magnetism in the organic world.Comment: 6 pages, 4 figures and 2 table
- …