8,751 research outputs found

    Study of BK()+B\to K^{(*)} \ell^+\ell^- Decays in the Family Non-universal ZZ' Models

    Full text link
    In a combined investigation of the BK()+B\to K^{(*)}\ell^+\ell^- decays, constraints on the related couplings in family non-universal ZZ^{\prime} models are derived. We find that within the allowed parameter space, the recently observed forward-backward asymmetry in the BK+B\to K^*\ell^+\ell^- decay can be explained, by flipping the signs of the Wilson coefficients C9effC_9^{\rm eff} and C10C_{10}. With the obtained constraints, we also calculate the branching ratio of the Bsμ+μB_s\to\mu^+\mu^- decay. The upper bound of our prediction is near the upper bound given by CDF Collaboration recently.Comment: 19 pages, 4 figures, some errors corrected; Journal versio

    Rotational Perturbations of Friedmann-Robertson-Walker Type Brane-World Cosmological Models

    Get PDF
    First order rotational perturbations of the Friedmann-Robertson-Walker metric are considered in the framework of the brane-world cosmological models. A rotation equation, relating the perturbations of the metric tensor to the angular velocity of the matter on the brane is derived under the assumption of slow rotation. The mathematical structure of the rotation equation imposes strong restrictions on the temporal and spatial dependence of the brane matter angular velocity. The study of the integrable cases of the rotation equation leads to three distinct models, which are considered in detail. As a general result we find that, similarly to the general relativistic case, the rotational perturbations decay due to the expansion of the matter on the brane. One of the obtained consistency conditions leads to a particular, purely inflationary brane-world cosmological model, with the cosmological fluid obeying a non-linear barotropic equation of state.Comment: 14 pages, 5 figures, REVTEX

    Spin Information from Vector-Meson Decay in Photoproduction

    Get PDF
    For the photoproduction of vector mesons, all single and double spin observables involving vector meson two-body decays are defined consistently in the γN\gamma N center of mass. These definitions yield a procedure for extracting physically meaningful single and double spin observables that are subject to known rules concerning their angle and energy evolution. As part of this analysis, we show that measuring the two-meson decay of a photoproduced ρ\rho or ϕ\phi does not determine the vector meson's vector polarization, but only its tensor polarization. The vector meson decay into lepton pairs is also insensitive to the vector meson's vector polarization, unless one measures the spin of one of the leptons. Similar results are found for all double spin observables which involve observation of vector meson decay. To access the vector meson's vector polarization, one therefore needs to either measure the spin of the decay leptons, make an analysis of the background interference effects or relate the vector meson's vector polarization to other accessible spin observables.Comment: 22 pages, 3 figure

    Zero differential resistance in two-dimensional electron systems at large filling factors

    Full text link
    We report on a state characterized by a zero differential resistance observed in very high Landau levels of a high-mobility two-dimensional electron system. Emerging from a minimum of Hall field-induced resistance oscillations at low temperatures, this state exists over a continuous range of magnetic fields extending well below the onset of the Shubnikov-de Haas effect. The minimum current required to support this state is largely independent on the magnetic field, while the maximum current increases with the magnetic field tracing the onset of inter-Landau level scattering

    Dynamical coupled-channel study of K+ Lambda photoproduction

    Full text link
    Results for the reaction gamma p --> K+ Lambda, studied within a constituent quark model and a dynamical coupled-channel approach, are presented and compared with recent data. Issues related to the search for missing baryon resonances are briefly discussed and the role played by a third S_{11} resonance is underlined.Comment: To appear in the proceedings of BARYONS 2004, Palaiseau, France, 25-29 Oct 200

    Unique gap structure and symmetry of the charge density wave in single-layer VSe2_2

    Full text link
    Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe2_2, which shows a (7×3\sqrt7 \times \sqrt3) CDW in contrast to the (4 ×\times 4) CDW for the layers in bulk VSe2_2. Angle-resolved photoemission spectroscopy (ARPES) from the single layer shows a sizable (7×3\sqrt7 \times \sqrt3) CDW gap of \sim100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit

    Non-linear magnetotransport in microwave-illuminated two-dimensional electron systems

    Full text link
    We study magnetoresistivity oscillations in a high-mobility two-dimensional electron system subject to both microwave and dc electric fields. First, we observe that the oscillation amplitude is a periodic function of the inverse magnetic field and is strongly suppressed at microwave frequencies near half-integers of the cyclotron frequency. Second, we obtain a complete set of conditions for the differential resistivity extrema and saddle points. These findings indicate the importance of scattering without microwave absorption and a special role played by microwave-induced scattering events antiparallel to the electric field.Comment: 4 pages, 4 figure

    PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 4: Maintenance document (version 1.1)

    Get PDF
    The Maintenance Document is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the over-all system and each program module of the system. Sufficient detail is given for program maintenance, updating and modification. It is assumed that the reader is familiar with programming and CDC (Control Data Corporation) computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few COMPASS language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are NOS 1.2, NOS/BE and SCOPE 2.1.3 on the CDC 6600, 7600 and Cyber 175 computing systems. The system is comprised of a data management system, a program library, an execution control module and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a separate module called MEC (Module Execution Control) was created to automatically supply most of the JCL cards. In addition to the MEC generated JCL, there is an additional set of user supplied JCL cards to initiate the JCL sequence stored on the system
    corecore