8,686 research outputs found

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    Soft Methodology for Cost-and-error Sensitive Classification

    Full text link
    Many real-world data mining applications need varying cost for different types of classification errors and thus call for cost-sensitive classification algorithms. Existing algorithms for cost-sensitive classification are successful in terms of minimizing the cost, but can result in a high error rate as the trade-off. The high error rate holds back the practical use of those algorithms. In this paper, we propose a novel cost-sensitive classification methodology that takes both the cost and the error rate into account. The methodology, called soft cost-sensitive classification, is established from a multicriteria optimization problem of the cost and the error rate, and can be viewed as regularizing cost-sensitive classification with the error rate. The simple methodology allows immediate improvements of existing cost-sensitive classification algorithms. Experiments on the benchmark and the real-world data sets show that our proposed methodology indeed achieves lower test error rates and similar (sometimes lower) test costs than existing cost-sensitive classification algorithms. We also demonstrate that the methodology can be extended for considering the weighted error rate instead of the original error rate. This extension is useful for tackling unbalanced classification problems.Comment: A shorter version appeared in KDD '1

    Global Spatio-temporal Patterns of Influenza in the Post-pandemic Era

    Get PDF
    We study the global spatio-temporal patterns of influenza dynamics. This is achieved by analysing and modelling weekly laboratory confirmed cases of influenza A and B from 138 countries between January 2006 and May 2014. The data were obtained from FluNet, the surveillance network compiled by the the World Health Organization. We report a pattern of {\it skip-and-resurgence} behavior between the years 2011 and 2013 for influenza H1N1/09, the strain responsible for the 2009 pandemic, in Europe and Eastern Asia. In particular, the expected H1N1/09 epidemic outbreak in 2011 failed to occur (or"skipped") in many countries across the globe, although an outbreak occurred in the following year. We also report a pattern of {\it well-synchronized} 2010 winter wave of H1N1/09 in the Northern Hemisphere countries, and a pattern of replacement of strain H1N1/77 by H1N1/09 between the 2009 and 2012 influenza seasons. Using both a statistical and a mechanistic mathematical model, and through fitting the data of 108 countries (108 countries in a statistical model and 10 large populations with a mechanistic model), we discuss the mechanisms that are likely to generate these events taking into account the role of multi-strain dynamics. A basic understanding of these patterns has important public health implications and scientific significance

    Romans Supergravity from Five-Dimensional Holograms

    Get PDF
    We study five-dimensional superconformal field theories and their holographic dual, matter-coupled Romans supergravity. On the one hand, some recently derived formulae allow us to extract the central charges from deformations of the supersymmetric five-sphere partition function, whose large N expansion can be computed using matrix model techniques. On the other hand, the conformal and flavor central charges can be extracted from the six-dimensional supergravity action, by carefully analyzing its embedding into type I' string theory. The results match on the two sides of the holographic duality. Our results also provide analytic evidence for the symmetry enhancement in five-dimensional superconformal field theories.Comment: 57 pages, 4 figures, 6 tables; v2: references adde

    Diffusion Dynamics, Moments, and Distribution of First Passage Time on the Protein-Folding Energy Landscape, with Applications to Single Molecules

    Full text link
    We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We obtain information for the first passage-time (FPT) distribution and its moments. The results show a dynamic transition temperature below which the FPT distribution develops a power-law tail, a signature of the intermittency phenomena of the folding dynamics. We also discuss the possible application of the results to single-molecule dynamics experiments
    • …
    corecore