412 research outputs found

    On Task-Adaptive Pretraining for Dialogue Response Selection

    Full text link
    Recent advancements in dialogue response selection (DRS) are based on the \textit{task-adaptive pre-training (TAP)} approach, by first initializing their model with BERT~\cite{devlin-etal-2019-bert}, and adapt to dialogue data with dialogue-specific or fine-grained pre-training tasks. However, it is uncertain whether BERT is the best initialization choice, or whether the proposed dialogue-specific fine-grained learning tasks are actually better than MLM+NSP. This paper aims to verify assumptions made in previous works and understand the source of improvements for DRS. We show that initializing with RoBERTa achieve similar performance as BERT, and MLM+NSP can outperform all previously proposed TAP tasks, during which we also contribute a new state-of-the-art on the Ubuntu corpus. Additional analyses shows that the main source of improvements comes from the TAP step, and that the NSP task is crucial to DRS, different from common NLU tasks.Comment: 6 pages, 4 figure

    Advancing Regular Language Reasoning in Linear Recurrent Neural Networks

    Full text link
    In recent studies, linear recurrent neural networks (LRNNs) have achieved Transformer-level performance in natural language modeling and long-range modeling while offering rapid parallel training and constant inference costs. With the resurged interest in LRNNs, we study whether they can learn the hidden rules in training sequences, such as the grammatical structures of regular language. We theoretically analyze some existing LRNNs and discover their limitations on regular language. Motivated by the analysis, we propose a new LRNN equipped with a block-diagonal and input-dependent transition matrix. Experiments suggest that the proposed model is the only LRNN that can perform length extrapolation on regular language tasks such as Sum, Even Pair, and Modular Arithmetic.Comment: The first two authors contributed equally to this wor

    Attention Alignment and Flexible Positional Embeddings Improve Transformer Length Extrapolation

    Full text link
    An ideal length-extrapolatable Transformer language model can handle sequences longer than the training length without any fine-tuning. Such long-context utilization capability relies heavily on a flexible positional embedding design. Upon investigating the flexibility of existing large pre-trained Transformer language models, we find that the T5 family deserves a closer look, as its positional embeddings capture rich and flexible attention patterns. However, T5 suffers from the dispersed attention issue: the longer the input sequence, the flatter the attention distribution. To alleviate the issue, we propose two attention alignment strategies via temperature scaling. Our findings show improvement on the long-context utilization capability of T5 on language modeling, retrieval, multi-document question answering, and code completion tasks without any fine-tuning. This suggests that a flexible positional embedding design and attention alignment can go a long way toward Transformer length extrapolation

    PESCO: Prompt-enhanced Self Contrastive Learning for Zero-shot Text Classification

    Full text link
    We present PESCO, a novel contrastive learning framework that substantially improves the performance of zero-shot text classification. We formulate text classification as a neural text matching problem where each document is treated as a query, and the system learns the mapping from each query to the relevant class labels by (1) adding prompts to enhance label matching, and (2) using retrieved labels to enrich the training set in a self-training loop of contrastive learning. PESCO achieves state-of-the-art performance on four benchmark text classification datasets. On DBpedia, we achieve 98.5\% accuracy without any labeled data, which is close to the fully-supervised result. Extensive experiments and analyses show all the components of PESCO are necessary for improving the performance of zero-shot text classification.Comment: accepted by ACL 202

    Just Ask:An Interactive Learning Framework for Vision and Language Navigation

    Full text link
    In the vision and language navigation task, the agent may encounter ambiguous situations that are hard to interpret by just relying on visual information and natural language instructions. We propose an interactive learning framework to endow the agent with the ability to ask for users' help in such situations. As part of this framework, we investigate multiple learning approaches for the agent with different levels of complexity. The simplest model-confusion-based method lets the agent ask questions based on its confusion, relying on the predefined confidence threshold of a next action prediction model. To build on this confusion-based method, the agent is expected to demonstrate more sophisticated reasoning such that it discovers the timing and locations to interact with a human. We achieve this goal using reinforcement learning (RL) with a proposed reward shaping term, which enables the agent to ask questions only when necessary. The success rate can be boosted by at least 15% with only one question asked on average during the navigation. Furthermore, we show that the RL agent is capable of adjusting dynamically to noisy human responses. Finally, we design a continual learning strategy, which can be viewed as a data augmentation method, for the agent to improve further utilizing its interaction history with a human. We demonstrate the proposed strategy is substantially more realistic and data-efficient compared to previously proposed pre-exploration techniques.Comment: 8 pages, accepted to AAAI 202
    • …
    corecore