8 research outputs found

    Semantic-aware Transmission for Robust Point Cloud Classification

    Full text link
    As three-dimensional (3D) data acquisition devices become increasingly prevalent, the demand for 3D point cloud transmission is growing. In this study, we introduce a semantic-aware communication system for robust point cloud classification that capitalizes on the advantages of pre-trained Point-BERT models. Our proposed method comprises four main components: the semantic encoder, channel encoder, channel decoder, and semantic decoder. By employing a two-stage training strategy, our system facilitates efficient and adaptable learning tailored to the specific classification tasks. The results show that the proposed system achieves classification accuracy of over 89\% when SNR is higher than 10 dB and still maintains accuracy above 66.6\% even at SNR of 4 dB. Compared to the existing method, our approach performs at 0.8\% to 48\% better across different SNR values, demonstrating robustness to channel noise. Our system also achieves a balance between accuracy and speed, being computationally efficient while maintaining high classification performance under noisy channel conditions. This adaptable and resilient approach holds considerable promise for a wide array of 3D scene understanding applications, effectively addressing the challenges posed by channel noise.Comment: submitted to globecom 202

    Resource Allocation for Capacity Optimization in Joint Source-Channel Coding Systems

    Full text link
    Benefited from the advances of deep learning (DL) techniques, deep joint source-channel coding (JSCC) has shown its great potential to improve the performance of wireless transmission. However, most of the existing works focus on the DL-based transceiver design of the JSCC model, while ignoring the resource allocation problem in wireless systems. In this paper, we consider a downlink resource allocation problem, where a base station (BS) jointly optimizes the compression ratio (CR) and power allocation as well as resource block (RB) assignment of each user according to the latency and performance constraints to maximize the number of users that successfully receive their requested content with desired quality. To solve this problem, we first decompose it into two subproblems without loss of optimality. The first subproblem is to minimize the required transmission power for each user under given RB allocation. We derive the closed-form expression of the optimal transmit power by searching the maximum feasible compression ratio. The second one aims at maximizing the number of supported users through optimal user-RB pairing, which we solve by utilizing bisection search as well as Karmarka' s algorithm. Simulation results validate the effectiveness of the proposed resource allocation method in terms of the number of satisfied users with given resources.Comment: 6 pages, 6 figure

    MIMO Precoding Design with QoS and Per-Antenna Power Constraints

    Full text link
    Precoding design for the downlink of multiuser multiple-input multiple-output (MU-MIMO) systems is a fundamental problem. In this paper, we aim to maximize the weighted sum rate (WSR) while considering both quality-of-service (QoS) constraints of each user and per-antenna power constraints (PAPCs) in the downlink MU-MIMO system. To solve the problem, we reformulate the original problem to an equivalent problem by using the well-known weighted minimal mean square error (WMMSE) framework, which can be tackled by iteratively solving three subproblems. Since the precoding matrices are coupled among the QoS constraints and PAPCs, we adopt alternating direction method of multipliers (ADMM) to obtain a distributed solution. Simulation results validate the effectiveness of the proposed algorithm

    Cardiovascular mortality by cancer risk stratification in patients with localized prostate cancer: a SEER-based study

    Get PDF
    PurposeThe risk of cardiovascular disease (CVD) mortality in patients with localized prostate cancer (PCa) by risk stratification remains unclear. The aim of this study was to determine the risk of CVD death in patients with localized PCa by risk stratification.Patients and methodsPopulation-based study of 340,806 cases in the Surveillance, Epidemiology, and End Results (SEER) database diagnosed with localized PCa between 2004 and 2016. The proportion of deaths identifies the primary cause of death, the competing risk model identifies the interaction between CVD and PCa, and the standardized mortality rate (SMR) quantifies the risk of CVD death in patients with PCa.ResultsCVD-related death was the leading cause of death in patients with localized PCa, and cumulative CVD-related death also surpassed PCa almost as soon as PCa was diagnosed in the low- and intermediate-risk groups. However, in the high-risk group, CVD surpassed PCa approximately 90 months later. Patients with localized PCa have a higher risk of CVD-related death compared to the general population and the risk increases steadily with survival (SMR = 4.8, 95% CI 4.6–5.1 to SMR = 13.6, 95% CI 12.8–14.5).ConclusionsCVD-related death is a major competing risk in patients with localized PCa, and cumulative CVD mortality increases steadily with survival time and exceeds PCa in all three stratifications (low, intermediate, and high risk). Patients with localized PCa have a higher CVD-related death than the general population. Management of patients with localized PCa requires attention to both the primary cancer and CVD

    Metastatic patterns and prognosis of patients with primary malignant cardiac tumor

    Get PDF
    BackgroundDistant metastases are independent negative prognostic factors for patients with primary malignant cardiac tumors (PMCT). This study aims to further investigate metastatic patterns and their prognostic effects in patients with PMCT.Materials and methodsThis multicenter retrospective study included 218 patients with PMCT diagnosed between 2010 and 2017 from Surveillance, Epidemiology, and End Results (SEER) database. Logistic regression was utilized to identify metastatic risk factors. A Chi-square test was performed to assess the metastatic rate. Kaplan–Meier methods and Cox regression analysis were used to analyze the prognostic effects of metastatic patterns.ResultsSarcoma (p = 0.002) and tumor size¿4 cm (p = 0.006) were independent risk factors of distant metastases in patients with PMCT. Single lung metastasis (about 34%) was the most common of all metastatic patterns, and lung metastases occurred more frequently (17.9%) than bone, liver, and brain. Brain metastases had worst overall survival (OS) and cancer-specific survival (CSS) among other metastases, like lung, bone, liver, and brain (OS: HR = 3.20, 95% CI: 1.02–10.00, p = 0.046; CSS: HR = 3.53, 95% CI: 1.09–11.47, p = 0.036).ConclusionPatients with PMCT who had sarcoma or a tumor larger than 4 cm had a higher risk of distant metastases. Lung was the most common metastatic site, and brain metastases had worst survival among others, such as lung, bone, liver, and brain. The results of this study provide insight for early detection, diagnosis, and treatment of distant metastases associated with PMCT

    ShapeWordle: Tailoring Wordles using Shape-aware Archimedean Spirals

    No full text
    International audienceWe present a new technique to enable the creation of shape-bounded Wordles, we call ShapeWordle, in which we fit words to form a given shape. To guide word placement within a shape, we extend the traditional Archimedean spirals to be shape-aware by formulating the spirals in a differential form using the distance field of the shape. To handle non-convex shapes, we introduce a multi-centric Wordle layout method that segments the shape into parts for our shape-aware spirals to adaptively fill the space and generate word placements. In addition, we offer a set of editing interactions to facilitate the creation of semantically-meaningful Wordles. Lastly, we present three evaluations: a comprehensive comparison of our results against the state-of-the-art technique (WordArt), case studies with 14 users, and a gallery to showcase the coverage of our technique

    Data_Sheet_1_Metastatic patterns and prognosis of patients with primary malignant cardiac tumor.docx

    No full text
    BackgroundDistant metastases are independent negative prognostic factors for patients with primary malignant cardiac tumors (PMCT). This study aims to further investigate metastatic patterns and their prognostic effects in patients with PMCT.Materials and methodsThis multicenter retrospective study included 218 patients with PMCT diagnosed between 2010 and 2017 from Surveillance, Epidemiology, and End Results (SEER) database. Logistic regression was utilized to identify metastatic risk factors. A Chi-square test was performed to assess the metastatic rate. Kaplan–Meier methods and Cox regression analysis were used to analyze the prognostic effects of metastatic patterns.ResultsSarcoma (p = 0.002) and tumor size¿4 cm (p = 0.006) were independent risk factors of distant metastases in patients with PMCT. Single lung metastasis (about 34%) was the most common of all metastatic patterns, and lung metastases occurred more frequently (17.9%) than bone, liver, and brain. Brain metastases had worst overall survival (OS) and cancer-specific survival (CSS) among other metastases, like lung, bone, liver, and brain (OS: HR = 3.20, 95% CI: 1.02–10.00, p = 0.046; CSS: HR = 3.53, 95% CI: 1.09–11.47, p = 0.036).ConclusionPatients with PMCT who had sarcoma or a tumor larger than 4 cm had a higher risk of distant metastases. Lung was the most common metastatic site, and brain metastases had worst survival among others, such as lung, bone, liver, and brain. The results of this study provide insight for early detection, diagnosis, and treatment of distant metastases associated with PMCT.</p
    corecore