6 research outputs found

    Effect of Spray Particle Size Distribution on Deposition in Human Respiratory Tract – Safety Evaluation

    Get PDF
    653-655The present study revealed the post spray increase in particle mass concentration of fipronil in ambient air near the application site viz. PM1, PM2.5 and PM10 were about 51.2, 66.1 and 161.9 μg/m3, respectively. The ambient particle size distribution of pesticide at agricultural application site of 15 m2 with varying nozzle size diameters followed with Optical Particle Counter (OPC) detection showed finer particles ranging from 0.23 to 40 μm got deposited significantly in the human pulmonary region

    Iron deficiency anemia and Plummer–Vinson syndrome: current insights

    No full text
    Amit Goel,1 Satvinder Singh Bakshi,2 Neetu Soni,3 Nanda Chhavi4 1Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; 2Department of Otorhinolaryngology and Head and Neck Surgery, Mahatma Gandhi Medical College and Research Institute, Puducherry, India; 3Department of Radiodiagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; 4Department of Pediatrics, Era’s Lucknow Medical College, Lucknow, India Abstract: Plummer–Vinson syndrome (PVS), a rare clinical condition, is characterized by a triad of dysphagia, iron deficiency anemia and esophageal web in the post-cricoid region. It was first described over a century ago. However, literature on this condition remains scanty, and its prevalence appears to be declining worldwide, possibly due to improvements in nutrition over time. The condition has been reported most commonly in thin-built, middle-aged, white women. The esophageal webs in PVS are thin mucosal folds, which are best seen either in lateral views at barium swallow or at esophagoscopy. These are usually semilunar or crescentic, being located most often along the anterior esophageal wall, but can be concentric. The exact cause and pathogenesis of PVS remain unclear, though iron and other nutritional deficiencies, genetic predisposition and autoimmunity have all been implicated in formation of the webs. Treatment includes correction of iron deficiency and endoscopic dilation of the esophageal webs to relieve dysphagia. PVS is associated with an increased risk of hypopharyngeal and esophageal malignancies. Correction of iron deficiency may arrest and reverse the mucosal changes and possibly reduces this risk. Keywords: Plummer–Vinson syndrome, Paterson–Brown–Kelly syndrome, esophageal web, dysphagia, iron deficiency anemi

    Dysbiosis Disrupts Gut Immune Homeostasis and Promotes Gastric Diseases

    No full text
    Perturbation in the microbial population/colony index has harmful consequences on human health. Both biological and social factors influence the composition of the gut microbiota and also promote gastric diseases. Changes in the gut microbiota manifest in disease progression owing to epigenetic modification in the host, which in turn influences differentiation and function of immune cells adversely. Uncontrolled use of antibiotics, chemotherapeutic drugs, and any change in the diet pattern usually contribute to the changes in the colony index of sensitive strains known to release microbial content in the tissue micromilieu. Ligands released from dying microbes induce Toll-like receptor (TLR) mimicry, skew hypoxia, and cause sterile inflammation, which further contributes to the severity of inflammatory, autoimmune, and tumorous diseases. The major aim and scope of this review is both to discuss various modalities/interventions across the globe and to utilize microbiota-based therapeutic approaches for mitigating the disease burden

    Inhibiting Wnt Signaling Reduces Cholestatic Injury by Disrupting the Inflammatory Axis

    No full text
    Background & Aims: β-Catenin, the effector molecule of the Wnt signaling pathway, has been shown to play a crucial role in bile acid homeostasis through direct inhibition of farnesoid X receptor (FXR), which has pleiotropic effects on bile acid homeostasis. We hypothesize that simultaneous suppression of β-catenin signaling and activation of FXR in a mouse model of cholestasis will reduce injury and biliary fibrosis through inhibition of bile acid synthesis. Methods: To induce cholestasis, we performed bile duct ligation (BDL) on wild-type male mice. Eight hours after surgery, mice received FXR agonists obeticholic acid, tropifexor, or GW-4064 or Wnt inhibitor Wnt-C59. Severity of cholestatic liver disease and expression of target genes were evaluated after either 5 days or 12 days of treatment. Results: We found that although the FXR agonists worsened BDL-induced injury and necrosis after 5 days, Wnt-C59 did not. After 12 days of BDL, Wnt-C59 treatment, but not GW-4064 treatment, reduced both the number of infarcts and the number of inflammatory cells in liver. RNA sequencing analysis of whole livers revealed a notable suppression of nuclear factor kappa B signaling when Wnt signaling is inhibited. We then analyzed transcriptomic data to identify a cholangiocyte-specific signature in our model and demonstrated that Wnt-C59–treated livers were enriched for genes expressed in quiescent cholangiocytes, whereas genes expressed in activated cholangiocytes were enriched in BDL alone. A similar decrease in biliary injury and inflammation occurred in Mdr2 KO mice treated with Wnt-C59. Conclusions: Inhibiting Wnt signaling suppresses cholangiocyte activation and disrupts the nuclear factor kappa B–dependent inflammatory axis, reducing cholestatic-induced injury

    Metadata record for: HIT-COVID, a global database tracking public health interventions to COVID-19

    No full text
    This dataset contains key characteristics about the data described in the Data Descriptor HIT-COVID, a global database tracking public health interventions to COVID-19. Contents: 1. human readable metadata summary table in CSV format 2. machine readable metadata file in JSON forma
    corecore