18 research outputs found

    Schizophrenia and drug addiction comorbidity : recent advances in our understanding of behavioural susceptibility and neural mechanisms

    Get PDF
    Schizophrenia is a severe psychiatric disorder which is worsened substantially by substance abuse/addiction. Substance abuse affects nearly 50% of individuals with schizophrenia, extends across several drug classes (e.g. nicotine, cannabinoids, ethanol, psychostimulants) and worsens overall functioning of patients. Prominent theories explaining schizophrenia and addiction comorbidity include the primary addiction hypothesis (i.e. schizophrenia susceptibility primes drug reward circuits, increasing drug addiction risk following drug exposure), the two-hit hypothesis (i.e. drug abuse and other genetic and/or environmental risk factors contribute to schizophrenia development) and the self-medication hypothesis (i.e. drug use alleviates schizophrenia symptoms). Animal models can be used to evaluate the utility and validity of these theories. Since this literature was last reviewed by Ng and colleagues in 2013 [Neurosci Biobehav Rev, 37(5)], significant advances have been made to our understanding of schizophrenia and substance abuse comorbidity. Here we review advances in the field since 2013, focussing on two key questions: 1) Does schizophrenia susceptibility increase susceptibility to drug addiction (assessing the primary addiction hypothesis), and 2) Do abused drugs exacerbate or ameliorate schizophrenia symptoms (assessing the two-hit hypothesis and the self-medication hypothesis). We addressed these questions using data from several schizophrenia preclinical models (e.g. genetic, lesion, neurodevelopmental, pharmacological) across drug classes (e.g. nicotine, cannabinoids, ethanol, psychostimulants). We conclude that addiction-like behaviour is present in several preclinical schizophrenia models, and drugs of abuse can exacerbate but also ameliorate schizophrenia-relevant behaviours. These behavioural changes are associated with altered receptor system function (e.g. dopaminergic, glutamatergic, GABAergic) critically implicated in schizophrenia and addiction pathology

    Effect of long-term cannabidiol on learning and anxiety in a female Alzheimer’s disease mouse model

    Get PDF
    Cannabidiol is a promising potential therapeutic for neurodegenerative diseases, including Alzheimer’s disease (AD). Our laboratory has shown that oral CBD treatment prevents cognitive impairment in a male genetic mouse model of AD, the amyloid precursor protein 1 x presenilin 1 hemizygous (APPxPS1) mouse. However, as sex differences are evident in clinical populations and in AD mouse models, we tested the preventive potential of CBD therapy in female APPxPS1 mice. In this study, 2.5-month-old female wildtype-like (WT) and APPxPS1 mice were fed 20 mg/kg CBD or a vehicle via gel pellets daily for 8 months and tested at 10.5 months in behavioural paradigms relevant to cognition (fear conditioning, FC; cheeseboard, CB; and novel object recognition test, NORT) and anxiety-like behaviours (elevated plus maze, EPM). In the CB, CBD reduced latencies to find a food reward in APPxPS1 mice, compared to vehicle-treated APPxPS1 controls, and this treatment effect was not evident in WT mice. In addition, CBD also increased speed early in the acquisition of the CB task in APPxPS1 mice. In the EPM, CBD increased locomotion in APPxPS1 mice but not in WT mice, with no effects of CBD on anxiety-like behaviour. CBD had limited effects on the expression of fear memory. These results indicate preventive CBD treatment can have a moderate spatial learning-enhancing effect in a female amyloid-β-based AD mouse model. This suggests CBD may have some preventive therapeutic potential in female familial AD patients

    Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin

    Get PDF
    Chronic neuroinflammation characterized by microglia reactivity is one of the main underlying processes in the initiation and progression of neurodegenerative diseases such as Alzheimer’s disease. This project characterized spatial memory during healthy aging and prolonged neuroinflammation in the chronic neuroinflammatory model, glial fibrillary acidic protein-interleukin 6 (GFAP-IL6). We investigated whether chronic treatment with the natural flavonoid, apigenin, could reduce microglia activation in the hippocampus and improve spatial memory. GFAP-IL6 transgenic and wild-type-like mice were fed with apigenin-enriched or control chow from 4 months of age and tested for spatial memory function at 6 and 22 months using the Barnes maze. Brain tissue was collected at 22 months to assess microgliosis and morphology using immunohistochemistry, stereology, and 3D single cell reconstruction. GFAP-IL6 mice showed age-dependent loss of spatial memory recall compared with wild-type-like mice. Chronic apigenin treatment decreased the number of Iba-1+ microglia in the hippocampus of GFAP-IL6 mice and changed microglial morphology. Apigenin did not reverse spatial memory recall impairment in GFAP-IL6 mice at 22 months of age. GFAP-IL6 mice may represent a suitable model for age-related neurodegenerative disease. Chronic apigenin supplementation significantly reduced microglia activation, but this did not correspond with spatial memory improvement in the Barnes Maze

    Noradrenergic β-receptor antagonism in the basolateral amygdala impairs reconsolidation, but not extinction, of alcohol self-administration : intra-BLA propranolol impairs reconsolidation of alcohol self-administration

    No full text
    A critical barrier to recovery from alcohol addiction is relapse propensity. Alcohol cues can trigger relapse, and pharmacologically facilitating processes such as extinction, which decreases cue associations, may help prevent relapse. The noradrenergic system mediates extinction learning for alcohol; however, the neural locus of this effect is unknown. This study sought to determine whether the basolateral amygdala (BLA), a region critical for fear extinction, also mediates extinction of alcohol seeking. Hooded Wistar rats (N = 12-15 per experiment) were implanted with bilateral cannula targeting the BLA and trained to lever press for 10% ethanol during auditory or visual cues. Infusions of the beta-receptor antagonist propranolol (2 mu g/side) were administered prior to extinction (Experiment 1), and rats assessed for relapse-like behaviour two weeks later, thus allowing for spontaneous recovery. We expected intra-BLA propranolol to impair extinction learning; however, propranololtreated rats exhibited reduced responding in the test of spontaneous recovery, suggesting enhanced extinction. We investigated this unexpected result by determining if propranolol treatment affected memory processes other than extinction. In a subsequent experiment, rats were infused with propranolol immediately after extinction to target consolidation of extinction (Experiment 2a), and assessed for spontaneous recovery. Propranolol was also infused after self-administration to target reconsolidation of the original learning (Experiment 2b). Propranolol treatment had no effect on consolidation of extinction learning, but impaired reconsolidation of self-administration. Propranolol administered prior to a self-administration session did not affect reinforced responding (Experiment 2c). Extinction and reconsolidation are opposing processes triggered by specific test conditions. We suggest our test conditions induced reconsolidation of self-administration memory by propranolol, rather than modulation of extinction. Thus, our data implicates infra-BLA noradrenergic beta-receptors in reconsolidation of alcohol self-administration memory

    Recent developments in the behavioural and pharmacological enhancement of extinction of drug seeking

    No full text
    One of the principal barriers to overcoming addiction is the propensity to relapse, even after months or years of abstinence. Relapse can be precipitated by cues and contexts associated with drug use; thus, decreasing the conditioned properties of these cues and contexts may assist in preventing relapse. The predictive power of drug cues and contexts can be reduced by repeatedly presenting them in the absence of the drug reinforcer, a process known as extinction. The potential of extinction to limit relapse has generated considerable interest and research over the past few decades. While pre-clinical animal models suggest extinction learning assists relapse prevention, treatment efficacy is often lacking when extinction learning principles are translated into clinical trials. Conklin and Tiffany (Addiction, 2002) suggest the lack of efficacy in clinical practice may be due to limited translation of procedures demonstrated through animal research and propose several methodological improvements to enhance extinction learning for drug addiction. This review will examine recent advances in the behavioural and pharmacological manipulation of extinction learning, based on research from pre-clinical models. In addition, the translation of pre-clinical findings—both those suggested by Conklin and Tiffany (2002) and novel demonstrations from the past 13 years—into clinical trials and the efficacy of these methods in reducing craving and relapse, where available, will be discussed. Finally, we highlight areas where promising pre-clinical models have not yet been integrated into current clinical practice but, if applied, could improve upon existing behavioural and pharmacological methods

    Molecular basis of cannabis-induced schizophrenia-relevant behaviours : insights from animal models

    No full text
    Introduction: Cannabis use is a well-established component risk factor for schizophrenia; however, the mechanisms by which cannabis use increases schizophrenia risk are unclear. Animal models can elucidate mechanisms by which chronic cannabinoid treatment can induce schizophrenia-relevant neural changes, in a standardised manner often not possible using patient-based data. Methods: We review recent literature (within the past 10 years) using animal models of chronic and subchronic treatment with cannabinoids which target the cannabinoid 1 receptor [i.e. ∆9-tetrahydrocannabinol, CP55,940 and WIN55,212-2]. Schizophrenia-relevant behavioural consequences of chronic cannabinoid treatment are first briefly summarised, followed by a detailed account of changes to several receptor systems [e.g. cannabinoid, dopaminergic, glutamatergic, γ-aminobutyric acid (GABAe)rgic, serotonergic, noradrenergic], dendritic spine morphology and inflammatory markers following chronic cannabinoids. We distinguish between adolescent and adult cannabinoid treatments, to determine if adolescence is a period of susceptibility to schizophrenia-relevant molecular changes. Results: Chronic cannabinoid treatment induces behaviours relevant to positive, negative and cognitive symptoms of schizophrenia. Chronic cannabinoids also cause region- and subtype-specific changes to receptor systems (e.g. cannabinoid, dopaminergic, glutamatergic, GABAergic), as well as changes in dendritic spine morphology and upregulation of inflammatory markers. These changes often align with molecular changes observed in post-mortem tissue from schizophrenia patients and correspond with schizophrenia-relevant behavioural change in rodents. There is some indication that adolescence is a period of susceptibility to cannabinoid-induced schizophrenia-relevant neural change, but more research in this field is required to confirm this hypothesis. Conclusions: Animal models indicate several molecular mechanisms by which chronic cannabinoids contribute to schizophrenia-relevant neural and behavioural change. It is likely that a number of these mechanisms are simultaneously impacted by chronic cannabinoids, thereby increasing schizophrenia risk in individuals who use cannabis. Understanding how cannabinoids can affect several molecular targets provides critical insight into the complex relationship between cannabis use and schizophrenia risk

    Cannabidiol (CBD) reduces cocaine-environment memory in mice

    No full text
    Rationale: Cocaine addiction is a global health problem with no approved pharmacotherapies. Preclinical research indicates the non-intoxicating phytocannabinoid, cannabidiol (CBD), can reduce addiction-relevant behaviour for several drug classes (e.g. ethanol, opiates, psychostimulants) in rodents. However, research into the effects of CBD on cocaine addiction-like behaviours is limited, and the acute effects of CBD on cocaine reward are unknown. Objectives: The present experiments sought to clarify the effects of CBD (10 mg/kg) on the acquisition, consolidation, reconsolidation, extinction and drug-primed reinstatement of cocaine (15 mg/kg) conditioned place preference (CPP) in adult male C57BL6/J mice. Methods: In five separate experiments, CBD was administered 1) prior to cocaine-context pairings, to target acquisition of cocaine-context memory; 2) immediately after cocaine-context pairings, to target consolidation of cocaine-context memory; 3) after a brief reactivation session, to target reconsolidation of cocaine memory; 4) prior to extinction sessions; and 5) prior to cocaine-primed reinstatement. Results: CBD treatment reduced preference for the cocaine-context 20 days after CBD cessation. CBD also reduced consolidation of cocaine memory, and this was evident 1 day after cessation of CBD treatment. Interestingly, CBD treatment also modified cocaine-induced locomotion. CBD did not affect reconsolidation of cocaine-induced place preference, the rate of extinction of cocaine memory, or drug-primed reinstatement of cocaine CPP. Conclusions: These findings indicate specific effects of acute 10 mg/kg CBD on cocaine memory processes, suggesting delayed effects on cocaine preference and consolidation of cocaine memory, and support the therapeutic utility of CBD for targeting some drug-associated memory processes

    Light phase does not affect operant sucrose self-administration in adult male C57BL/6JAbr mice

    No full text
    Circadian rhythm can have significant impacts on several physiological domains relevant to the expression of behaviour in mice, including body temperature, corticosterone levels, hormones and immune function. Mice are nocturnal; yet many behavioural studies are performed during the light phase, when mice are naturally inactive. Not surprisingly, the time of day when mice are behaviourally tested can significantly impact on domains such as locomotor activity, e.g. dark phase testing results in higher locomotion rates than light phase testing. However, effects on other behavioural domains, such as cognition, are not well-established, with inconsistent reports on improved cognition during dark phase testing compared to light phase testing in mice. Importantly, the impact of circadian rhythm on operant responding, a common task relevant to research into drug abuse and cognitive disorders, has rarely been investigated in mice. Here we evaluated if testing adult male C57BL/6JAbr mice in operant chambers during the light or dark phase affects acquisition of lever responding, lever discrimination under different fixed ratio (FR) schedules (FR1, FR2, FR4), and/or motivation under a progressive ratio schedule for 10% oral sucrose. We found no effect of circadian rhythm on levels of active and inactive lever pressing, or lever discrimination for oral sucrose at any stage of the experiment. These results may be due to high levels of motivation for sucrose under food restriction and low levels of task complexity limiting detection of any effect of light phase on operant behaviour

    Impaired extinction of operant cocaine in a genetic mouse model of schizophrenia risk

    No full text
    Background Individuals with schizophrenia have high rates of comorbid substance use problems. One potential explanation for this comorbidity is similar neuropathophysiology in substance use and schizophrenia, which may arise from shared genetic risk factors between the two disorders. Here we investigated if genetic risk for schizophrenia could affect drug reward and reinforcement for cocaine in an established mouse model of genetic risk for schizophrenia, the neuregulin 1 transmembrane domain heterozygous (Nrg1 TM HET) mouse. Methods We examined drug-induced locomotor sensitization and conditioned place preference for several cocaine doses (5, 10, 20, 30 mg/kg) in male adult Nrg1 TM HET and wild-type-like (WT) littermates. We also investigated intravenous self-administration of and motivation for cocaine (doses 0.1, 0.5, 1 mg/kg/infusion), as well as extinction and cue-induced reinstatement of cocaine. In a follow-up experiment, we examined self-administration, extinction and cue-induced reinstatement of a natural reward, oral sucrose. Results Cocaine preference was similar between Nrg1 TM HET mice and WT littermates at all doses tested. Locomotor sensitization to cocaine was not affected by Nrg1 genotype at any dose. Although self-administration and motivation for cocaine was unaffected, extinction of cocaine self-administration was impaired in Nrg1 TM HET compared to WT controls, and cue-induced reinstatement was greater in Nrg1 mutants in the middle of the reinstatement session. Sucrose self-administration and extinction thereof was not affected by genotype, but inactive lever responding was elevated during cue-induced reinstatement for operant sucrose in Nrg1 TM HET mice compared to WTs. Discussion These results suggest impaired response inhibition for cocaine in Nrg1 TM HET mice and suggests Nrg1 mutation may contribute to behaviours which can limit control over cocaine use

    Effects of handling on the behavioural phenotype of the neuregulin 1 type III transgenic mouse model for schizophrenia

    No full text
    Handling of laboratory mice affects animal wellbeing and behavioural test outcomes. However, present research has focused on handling effects in common strains of laboratory mice despite the knowledge that environmental factors can modify established phenotypes of genetic mouse models. Thus, we examined the impact of handling on the face validity of a transgenic mouse model for the schizophrenia risk gene neuregulin 1 (i.e. Nrg1 type III overexpression). Nrg1 III tg and wild type-like (WT) control mice of both sexes underwent tail or tunnel handling before being assessed in the open field (OF), elevated plus maze (EPM), social preference/novelty, prepulse inhibition, and fear conditioning tests. Tunnel-handling reduced the startle response in all mice, increased OF locomotion and exploration in males and reduced anxiety in males (OF) and females (EPM) compared to tail-handling. Importantly, tunnel handling induced a more pronounced startle response to increasing startle stimuli in Nrg1 III tg females compared to respective controls, a phenomenon absent in tail-handled females. Finally, Nrg1 III tg males displayed reduced OF exploration and centre locomotion and Nrg1 III tg females displayed increased cue freezing over time compared to controls. In conclusion, handling methods have a significant impact on a variety of behavioural domains thus the impact of routine handling procedures need be considered when testing behavioural phenotypes. Handling did not change the main schizophrenia-relevant characteristics of Nrg1 III tg mice but affected the acoustic startle-response in a genotype- and sex-specific manner. Future research should evaluate the effect of handling on other genetic models
    corecore