505 research outputs found
Creation of Column Flotation Cells of Large Volume Chambers and their Industrial Applications
The paper contains the information on the development and commercial use of a new generation of flotation pneumatic cells of large volume chambers. The description of a mechanism of a process technology, cells' design and some results of theoretical research are given
Trophic effects of sponge feeding within Lake Baikal\u27s littoral zone .2. Sponge abundance, diet, feeding efficiency, and carbon flux
Endemic freshwater demosponges in the littoral zone of Lake Baikal, Russia, dominate the benthic biomass, covering 44% of the benthos. We measured in situ sponge abundance and,orating and calculated sponge-mediated Fluxes of picoplankton (plankton \u3c2 mu m) for two common species, Baikalospongia intermedia and Baikalospongia bacillifera. By means of dual-beam how cytometry, we found retention efficiencies ranging from 58 to 99% for four types of picoplankton: heterotrophic bacteria, Synechococcus-type cyanobacteria, autotrophic picoplankton with one chloroplast, and autotrophic picoplankton with two chloroplasts. By using a general model for organism-mediated fluxes, we conservatively estimate that through active suspension feeding, sponges are a sink for 1.97 g C d(-1) m(-1), mostly from procaryotic cell types. Furthermore, grazing by these extensive sponge communities can create a layer of picoplankton-depleted water overlying the benthic community in this unique lake
Π‘ΠΈΠ½ΡΠ΅Π· ΡΠ° Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ 1-n-Π°Π»ΠΊΡΠ»ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡ ΡΠ΄Π½ΠΈΡ 3-n-Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ 1Π½-ΡΡΡΠ½ΠΎ [3,2-d]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2,4-Π΄ΡΠΎΠ½ΡΠ²
Two approaches for synthesis of a great variety of 3-N-substituted 1H-thieno[3,2-d]pyrimidine-2,4-diones have been investigated. The first one is based on the interaction of methyl 3-aminothiophene-2-carboxylate with isocyanates, which is a good way for preparation of 3-N-aryl-1H-thieno[3,2-d]pyrimidine-2,4-diones. The key step of the other one, which allows introduction of different alkyl substituents in position 3, is oxidation of 4-oxo-2-thioxo-2,3- dihydrothieno[3,2-d]pyrimidines prepared by interaction of 3-isothiocyanatothiophene-2-carboxylate and the primary aliphatic amines with hydrogen peroxide. Alkylation of the intermediates obtained in both ways resulted in 1-N-alkyl-3-N-substituted 1Π-thieno[3,2-d]pyrimidine-2,4-diones. 1H NMR spectra of the target molecules contain the signals of thiophene cycle protons H-6 (Ξ΄ 8.02-8.18 ppm) and H-7 (Ξ΄ 7.06-7.15 ppm) together with the signal of CH2 groups in position 1 of the heterocyclic system in the range of Ξ΄ 4.70-5.20 ppm. The antimicrobial activity of the compounds synthesized has been investigated by the agar well diffusion method. It has been determined that the compound with phenyl substituents in position 3 and o-methylbenzyl substituent in position 1 is the most active antimicrobial agent. The 1-N-alkyl derivatives of 2,4-dioxo-1,4-dihydro-2H-thieno[3,2-d]pyrimidine-3-yl)propanoic acid benzyl amide appeared to be active against the strains of Staphylococcus aureus and Bacillus subtilis.ΠΡΠ»ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π΄Π²Π° ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
3-N-Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
1H-ΡΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΏΠΎΡΠΎΠ±Π½Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ Π±ΠΎΠ»ΡΡΠΎΠ΅ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠΌΡ ΠΈΠ· Π½ΠΈΡ
, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠΌΡ Π½Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΠΌΠ΅ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΡΠ° 3-Π°ΠΌΠΈΠ½ΠΎΡΠΈΠΎΡΠ΅Π½-2-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Ρ ΠΈΠ·ΠΎΡΠΈΠ°Π½Π°ΡΠ°ΠΌΠΈ, Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ 3-N-Π°ΡΠΈΠ» Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ 1H-ΡΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½Ρ. ΠΡΠΎΡΠΎΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠ΅ Π°Π»ΠΊΠΈΠ»ΡΠ½ΡΠ΅ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΠΈ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3, ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄ΠΎΠΌ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π° 4-ΠΎΠΊΡΠΎ-2-ΡΠΈΠΎΠΊΡΠΎ-2,3-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΡΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ², ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΏΡΡΠ΅ΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠ΅ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΡΠ° 3-ΠΈΠ·ΠΎΡΠΈΠΎΡΠΈΠ°Π½Π°ΡΠΎΡΠΈΠΎΡΠ΅Π½-2-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ
Π°Π»ΠΈΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π°ΠΌΠΈΠ½ΠΎΠ². ΠΡΡΠ΅ΠΌ Π°Π»ΠΊΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΏΠΎΠ»ΡΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π±ΡΠ»ΠΈ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Ρ 1-N-Π°Π»ΠΊΠΈΠ»-3-N-Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ 1Π-ΡΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½Ρ. Π‘ΠΏΠ΅ΠΊΡΡΡ 1Π Π―ΠΠ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΡΠΈΠ³Π½Π°Π»Ρ ΠΏΡΠΎΡΠΎΠ½ΠΎΠ² ΡΠΈΠΎΡΠ΅Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡΡ
Π΄ΡΠ±Π»Π΅ΡΠ½ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π-6 (Ξ΄ 8.02-8.18 ΠΌ.Π΄.) ΠΈ Π-7 (Ξ΄ 7.01-7.36 ΠΌ.Π΄.) ΠΈ ΡΠΈΠ³Π½Π°Π»Ρ ΠΏΡΠΎΡΠΎΠ½ΠΎΠ² CH2 Π³ΡΡΠΏΠΏΡ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Ρ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 1 Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ Ξ΄ 4.50-5.25 ΠΌ.Π΄. ΠΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΈΠ·ΡΡΠ°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΠΌ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΡΠ΅Π½ΠΈΠ»ΡΠ½ΡΠΉ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Ρ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 ΠΈ ΠΎ-ΠΌΠ΅ΡΠΈΠ»Π±Π΅Π½Π·ΠΈΠ»ΡΠ½ΡΠΉ β Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 1 ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΠ΅ 1-N-Π°Π»ΠΊΠΈΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ 3-N-Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
1Π-ΡΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΎΠΊΠ°Π·Π°Π»ΠΈΡΡ Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΡΠ°ΠΌΠΌΠ°ΠΌ Staphylococcus aureus ΠΈ Bacillus subtilis.ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ Π΄Π²Π° ΠΏΡΠ΄Ρ
ΠΎΠ΄ΠΈ Π΄ΠΎ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
3-N-Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
1H-ΡΡΡΠ½ΠΎ[3,2-d]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2,4-Π΄ΡΠΎΠ½ΡΠ², ΡΠΊΡ Π·Π΄Π°ΡΠ½Ρ Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠΈΡΠΈ Π²Π΅Π»ΠΈΠΊΠ΅ Ρ
ΡΠΌΡΡΠ½Π΅ ΡΠΎΠ·ΠΌΠ°ΡΡΡΡ. ΠΠ³ΡΠ΄Π½ΠΎ Π· ΠΏΠ΅ΡΡΠΈΠΌ Π· Π½ΠΈΡ
, Π·Π°ΡΠ½ΠΎΠ²Π°Π½ΠΈΠΌ Π½Π° Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ ΠΌΠ΅ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π΅ΡΡΠ΅ΡΡ 3-Π°ΠΌΡΠ½ΠΎΡΡΠΎΡΠ΅Π½-2-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ Π· ΡΠ·ΠΎΡΡΠ°Π½Π°ΡΠ°ΠΌΠΈ, Π±ΡΠ»ΠΈ ΠΎΡΡΠΈΠΌΠ°Π½Ρ 3-N-Π°ΡΠΈΠ» Π·Π°ΠΌΡΡΠ΅Π½Ρ 1H-ΡΡΡΠ½ΠΎ[3,2-d] ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2,4-Π΄ΡΠΎΠ½ΠΈ. ΠΡΡΠ³ΠΈΠΉ ΠΏΡΠ΄Ρ
ΡΠ΄, ΡΠΊΠΈΠΉ Π½Π°Π΄Π°Ρ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈ ΡΠΊΠ»Π°Π΄Π½Ρ Π°Π»ΠΊΡΠ»ΡΠ½Ρ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠΈ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 3, Π·Π°ΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° ΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ Π³ΡΠ΄ΡΠΎΠ³Π΅Π½Ρ ΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄ΠΎΠΌ 4-ΠΎΠΊΡΠΎ-2-ΡΡΠΎΠΊΡΠΎ-2,3-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΡΡΡΠ½ΠΎ[3,2-d]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΡΠ², ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
ΡΠ»ΡΡ
ΠΎΠΌ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ ΠΌΠ΅ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π΅ΡΡΠ΅ΡΡ 3-ΡΠ·ΠΎΡΡΠΎΡΡΠ°Π½Π°ΡΠΎΡΡΠΎΡΠ΅Π½-2-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ Π· ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΠΌΠΈ ΠΏΠ΅ΡΠ²ΠΈΠ½Π½ΠΈΡ
Π°Π»ΡΡΠ°ΡΠΈΡΠ½ΠΈΡ
Π°ΠΌΡΠ½ΡΠ². Π¨Π»ΡΡ
ΠΎΠΌ Π°Π»ΠΊΡΠ»ΡΠ²Π°Π½Π½Ρ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
Π½Π°ΠΏΡΠ²ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ² Π±ΡΠ»ΠΈ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½Ρ 1-N-Π°Π»ΠΊΡΠ»-3-N-Π·Π°ΠΌΡΡΠ΅Π½Ρ 1Π-ΡΡΡΠ½ΠΎ[3,2-d]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2,4-Π΄ΡΠΎΠ½ΠΈ. Π‘ΠΏΠ΅ΠΊΡΡΠΈ 1Π Π―ΠΠ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
ΠΊΡΠ½ΡΠ΅Π²ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ ΠΌΡΡΡΡΡΡ ΡΠΈΠ³Π½Π°Π»ΠΈ ΠΏΡΠΎΡΠΎΠ½ΡΠ² ΡΡΠΎΡΠ΅Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Ρ Ρ Π²ΠΈΠ³Π»ΡΠ΄Ρ Π΄Π²ΠΎΡ
Π΄ΡΠ±Π»Π΅ΡΠ½ΠΈΡ
ΡΠΈΠ³Π½Π°Π»ΡΠ² ΠΏΡΠΎΡΠΎΠ½ΡΠ² Π-6 (Ξ΄ 8.02-8.18 ΠΌ.Ρ.) Ρ Π-7 (Ξ΄ 7.01-7.36 ΠΌ.Ρ.) ΡΠ° ΡΠΈΠ³Π½Π°Π»ΠΈ ΠΏΡΠΎΡΠΎΠ½ΡΠ² CH2 Π³ΡΡΠΏΠΈ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠ° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 1 Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ Π² ΠΎΠ±Π»Π°ΡΡΡ Ξ΄ 4.50-5.25 ΠΌ.Ρ. ΠΠ½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ Π²ΠΈΠ²ΡΠ°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡΡΠ·ΡΡ Π² Π°Π³Π°Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π½Π°ΠΉΠ±ΡΠ»ΡΡΡ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π΄ΡΡ ΡΠΈΠ½ΠΈΡΡ ΡΠΏΠΎΠ»ΡΠΊΠ°, ΡΠΊΠ° ΠΌΡΡΡΠΈΡΡ ΡΠ΅Π½ΡΠ»ΡΠ½ΠΈΠΉ Π·Π°ΠΌΡΡΠ½ΠΈΠΊ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 3 ΡΠ° ΠΎ-ΠΌΠ΅ΡΠΈΠ»Π±Π΅Π½Π·ΠΈΠ»ΡΠ½ΠΈΠΉ β Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 1 ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΠΈ. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ 1-N-Π°Π»ΠΊΡΠ»ΠΎΠ²Π°Π½Ρ ΠΏΠΎΡ
ΡΠ΄Π½Ρ 3-N-Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
1Π-ΡΡΡΠ½ΠΎ[3,2-d]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2,4-Π΄ΡΠΎΠ½ΡΠ² Π²ΠΈΡΠ²ΠΈΠ»ΠΈΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ ΠΏΠΎ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ Π΄ΠΎ ΡΡΠ°ΠΌΡΠ² Staphylococcus aureus ΡΠ° Basillus subtilis
Π‘ΠΈΠ½ΡΠ΅Π· ΡΠ° Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΠΎΡ ΡΠ΄Π½ΠΈΡ Π΅ΡΠΈΠ» 5-ΠΌΠ΅ΡΠΈΠ»-2-(Π°Π»ΠΊΡΠ»ΡΡΠΎ)-4-ΠΎΠΊΡΠΎ-3,4-Π΄ΠΈ-Π³ΡΠ΄ΡΠΎΡΡΡΠ½ΠΎ[2,3-d]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-6-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ²
By alkylation of the products of diethyl 3-methyl-5 {[(methylthio)carbonothioyl]amino}-2,4-thiophenedicarboxylate interactionwith benzylamines the novel derivatives of ethyl 5-methyl-2-(alkylthio)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylates have been obtained. It has been found that the signal of the CH2-group adjacent to the nitrogen atom in position 3 of thieno[2,3-d]pyrimidine system is always observed in the range of 5.35-5.40 ppm, while the position of the signal of methythylene-group connected with the sulfur atom much depends upon the structure of the radical attached to this group. IR-spectra of all the compounds contain the intensive Π‘=Π stretching band at 1721-1678 cm-1; the spectra of the compounds with amide function contain bands of stretching NβH of 3280-3263 cm-1, while nitriles have the band of stretching Cβ‘N vibrations near 2250 Ρm-1. It has been determined that all of the compounds are mostly active against the strain of Candida aibicans fungi. The most resistant microorganism was found to be the strains of Staphylococcus aureus. The only exception is the derivative modified with the thioacetic acid residue in position 2 and unsubstituted benzyl in position 3, which appeared to be highly active against Staphylococcus aureus strain. Amides of thioactetic acid modified in position 3 with 3,4-dichlorobenzyl substituent and thioacetamide substituents in position 2 are active against Pseudomonas aeruginosa, as well as the compound, which contains 3-chlorobenzyl substituent in position 3 and p-chlorobenzotiol substituents in position 2 of thieno[2,3-d]pyrimidine.ΠΡΡΠ΅ΠΌ Π°Π»ΠΊΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π΄ΠΈΡΡΠΈΠ» 3-ΠΌΠ΅ΡΠΈΠ»-5-{[(ΠΌΠ΅ΡΠΈΠ»ΡΠΈΠΎ)ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΡΠΈΠΎΠΈΠ»]Π°ΠΌΠΈΠ½ΠΎ}-2,4-ΡΠΈΠΎΡΠ΅Π½Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ° Ρ Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΠΈΠ½Π°ΠΌΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π½ΠΎΠ²ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΡΡΠΈΠ» 5-ΠΌΠ΅ΡΠΈΠ»-2-(Π°Π»ΠΊΠΈΠ»ΡΠΈΠΎ)-4-ΠΎΠΊΡΠΎ-3,4-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΡΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-6-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
1Π Π―ΠΠ ΡΠΈΠ³Π½Π°Π» Π³ΡΡΠΏΠΏΡ Π‘Π2, ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ Ρ Π°ΡΠΎΠΌΠΎΠΌ Π°Π·ΠΎΡΠ° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 ΡΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π΄Π»Ρ Π²ΡΠ΅Ρ
ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 5,35-5,4 ΠΌ.Π΄., Π² ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΠ³Π½Π°Π»Π° ΠΌΠ΅ΡΠΈΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ Π³ΡΡΠΏΠΏΡ Π²ΠΎΠ·Π»Π΅ Π°ΡΠΎΠΌΠ° ΡΠ΅ΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΠΊΠ°Π»Π°, Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ Ρ Π½Π΅ΠΉ. Π ΠΠ-ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
Π΄Π»Ρ Π²ΡΠ΅Ρ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΡΠ΅ ΠΏΠΎΠ»ΠΎΡΡ Π²Π°Π»Π΅Π½ΡΠ½ΡΡ
ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π‘=Π 1721-1678 ΡΠΌ-1, Π΄Π»Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Ρ Π°ΠΌΠΈΠ΄Π½ΡΠΌ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠΌ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ ΠΏΠΎΠ»ΠΎΡΡ Π²Π°Π»Π΅Π½ΡΠ½ΡΡ
ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ NβH 3280-3263 cΠΌ-1, Π΄Π»Ρ Π½ΠΈΡΡΠΈΠ»ΠΎΠ² Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΠΏΠΎΠ»ΠΎΡΠ° Π²Π°Π»Π΅Π½ΡΠ½ΡΡ
ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Cβ‘N ΠΏΡΠΈ 2250 ΡΠΌ-1. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡΠΈΠ²Π½ΠΎ ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡ ΡΠΎΡΡ Π³ΡΠΈΠ±ΠΎΠ² Candida aibicans. ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΎΠΊΠ°Π·Π°Π»ΠΎΡΡ Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ Π°ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΡΠ°ΠΌΠΌΠ°ΠΌ Staphylococcus aureus. ΠΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Ρ ΠΎΡΡΠ°ΡΠΊΠΎΠΌ ΡΠΈΠΎΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2 ΠΈ Π½Π΅Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠΌ Π±Π΅Π½Π·ΠΈΠ»ΡΠ½ΡΠΌ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Π΅ΠΌ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΎΡΠ²ΠΈΠ»ΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΡΠ°ΠΌΠΌΡ Staphylococcus aureus. ΠΠΌΠΈΠ΄Ρ ΡΠΈΠΎΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Ρ 3,4-Π΄ΠΈΡ
Π»ΠΎΡΠ±Π΅Π½Π·ΠΈΠ»ΡΠ½ΡΠΌ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Π΅ΠΌ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 ΠΈ ΡΠΈΠΎΠ°ΡΠ΅ΡΠ°ΠΌΠΈΠ΄Π½ΡΠΌΠΈ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠΌΠΈ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2 ΡΠ²Π»ΡΡΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Pseudomonas aeruginosa ΡΠ°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π΅ 3-Ρ
Π»ΠΎΡΠ±Π΅Π½Π·ΠΈΠ»ΡΠ½ΡΠΉ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Ρ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 ΡΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½Π° ΠΈ ΠΏ-Ρ
Π»ΠΎΡΠ±Π΅Π½Π·ΠΎΡΠΈΠΎΠ»ΡΠ½ΡΠΉ Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Ρ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2.Π¨Π»ΡΡ
ΠΎΠΌ Π°Π»ΠΊΡΠ»ΡΠ²Π°Π½Π½Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ² Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π΄ΡΠ΅ΡΠΈΠ» 3-ΠΌΠ΅ΡΠΈΠ»-5-{[(ΠΌΠ΅ΡΠΈΠ»ΡΡΠΎ)ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΡΡΠΎΡΠ»]Π°ΠΌΡΠ½ΠΎ}-2,4-ΡΡΠΎΡΠ΅Π½Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡ Π· Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΡΠ½Π°ΠΌΠΈ ΠΎΡΡΠΈΠΌΠ°Π½Ρ Π½ΠΎΠ²Ρ ΠΏΠΎΡ
ΡΠ΄Π½Ρ Π΅ΡΠΈΠ» 5-ΠΌΠ΅ΡΠΈΠ»-2-(Π°Π»ΠΊΡΠ»ΡΡΠΎ)-4-ΠΎΠΊΡΠΎ-3,4-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΡΡΡΠ½ΠΎ[2,3-d] ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-6-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ². ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π² ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
1Π Π―ΠΠ ΡΠΈΠ³Π½Π°Π» Π³ΡΡΠΏΠΈ Π‘Π2, Π·βΡΠ΄Π½Π°Π½ΠΎΡ Π· Π°ΡΠΎΠΌΠΎΠΌ ΠΡΡΡΠΎΠ³Π΅Π½Ρ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 3 ΡΡΡΠ½ΠΎ[2,3-d]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΠΎΠ²ΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ, Π΄Π»Ρ ΡΡΡΡ
ΠΊΡΠ½ΡΠ΅Π²ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ Π·Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡΡ Π² Π΄ΡΠ°ΠΏΠ°Π·ΠΎΠ½Ρ 5,35-5,4 ΠΌ.Ρ., Π² ΡΠΎΠΉ ΠΆΠ΅ ΡΠ°Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ ΡΠΈΠ³Π½Π°Π»Ρ ΠΌΠ΅ΡΠΈΠ»Π΅Π½ΠΎΠ²ΠΎΡ Π³ΡΡΠΏΠΈ Π±ΡΠ»Ρ Π°ΡΠΎΠΌΠ° Π‘ΡΠ»ΡΡΡΡΡ Π·Π½Π°ΡΠ½ΠΎ Π·Π°Π»Π΅ΠΆΠΈΡΡ Π²ΡΠ΄ Π±ΡΠ΄ΠΎΠ²ΠΈ ΡΠ°Π΄ΠΈΠΊΠ°Π»Ρ, Π±Π΅Π·ΠΏΠΎΡΠ΅ΡΠ΅Π΄Π½ΡΠΎ Π·Π²βΡΠ·Π°Π½ΠΎΠ³ΠΎ Π· Π½Π΅Ρ. Π ΠΠ§-ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
Π΄Π»Ρ ΡΡΡΡ
ΡΠΏΠΎΠ»ΡΠΊ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΈΠΌΠΈ Ρ ΡΠ½ΡΠ΅Π½ΡΠΈΠ²Π½Ρ ΡΠΌΡΠ³ΠΈ Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
ΠΊΠΎΠ»ΠΈΠ²Π°Π½Ρ Π‘=Π 1721-1678 ΡΠΌ-1, Π΄Π»Ρ ΡΠΏΠΎΠ»ΡΠΊ Π· Π°ΠΌΡΠ΄Π½ΠΈΠΌ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠΌ Π½Π°ΡΠ²Π½Ρ ΡΠΌΡΠ³ΠΈ Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
ΠΊΠΎΠ»ΠΈΠ²Π°Π½Ρ NβH 3280-3263 cΠΌ-1, Π΄Π»Ρ Π½ΡΡΡΠΈΠ»ΡΠ² ΡΠΏΠΎΡΡΠ΅ΡΡΠ³Π°ΡΡΡΡΡ ΡΠΌΡΠ³Π° Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
ΠΊΠΎΠ»ΠΈΠ²Π°Π½Ρ Cβ‘N ΠΏΡΠΈ 2250 ΡΠΌ-1. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΡΡ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π½Π°ΠΉΠ±ΡΠ»ΡΡΠ΅ ΠΏΡΠΈΠ³Π½ΡΡΡΡΡΡ ΡΡΡΡ Π³ΡΠΈΠ±ΡΠ² Candida aibicans. ΠΠ°ΠΉΠΌΠ΅Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡ Π±ΡΠ»ΡΡΡΡΡΡ ΡΠΏΠΎΠ»ΡΠΊ Π²ΠΈΡΠ²ΠΈΠ»Π°ΡΡ Π΄ΠΎ ΡΡΠ°ΠΌΡΠ² Staphylococcus aureus. ΠΠΈΠΊΠ»ΡΡΠ΅Π½Π½ΡΠΌ Ρ Π»ΠΈΡΠ΅ ΡΠΏΠΎΠ»ΡΠΊΠ° ΡΠ· Π·Π°Π»ΠΈΡΠΊΠΎΠΌ ΡΡΠΎΠΎΡΡΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 2 ΡΠ° Π½Π΅Π·Π°ΠΌΡΡΠ΅Π½ΠΈΠΌ Π±Π΅Π½Π·ΠΈΠ»ΡΠ½ΠΈΠΌ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠΎΠΌ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 3, ΡΠΊΠ° ΠΏΡΠΎΡΠ²ΠΈΠ»Π° Π·Π½Π°ΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΠΎ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ Π΄ΠΎ ΡΡΠ°ΠΌΡ Staphylococcus aureus. ΠΠΌΡΠ΄ΠΈ ΡΡΠΎΠΎΡΡΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ Π· 3,4-Π΄ΠΈΡ
Π»ΠΎΡΠΎΠ±Π΅Π½Π·ΠΈΠ»ΡΠ½ΠΈΠΌ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠΎΠΌ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 3 ΡΠ° ΡΡΠΎΠ°ΡΠ΅ΡΠ°ΠΌΡΠ΄Π½ΠΈΠΌΠΈ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠ°ΠΌΠΈ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 2 Ρ Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ ΠΏΠΎ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ Π΄ΠΎ Pseudomonas aeruginosa, ΡΠ°ΠΊ ΡΠΊ Ρ ΡΠΏΠΎΠ»ΡΠΊΠ°, ΡΠΎ ΠΌΡΡΡΠΈΡΡ 3-Ρ
Π»ΠΎΡΠΎΠ±Π΅Π½Π·ΠΈΠ»ΡΠ½ΠΈΠΉ Π·Π°ΠΌΡΡΠ½ΠΈΠΊ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 3 ΡΡΡΠ½ΠΎ[2,3-d]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½Ρ ΡΠ° ΠΏ-Ρ
Π»ΠΎΡΠΎΠ±Π΅Π½Π·ΠΎΡΡΠΎΠ»ΡΠ½ΠΈΠΉ Π·Π°ΠΌΡΡΠ½ΠΈΠΊ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 2
Guardianship for Popular Sobriety in Russia at the Beginning of 20th Century: from Wine Monopoly to βDry Lawβ
TheΒ article is devoted to theΒ guardianship ofΒ popular sobrietyΒ β institutions created by theΒ government ofΒ theΒ Russian Empire at theΒ end ofΒ theΒ 19th century to organize theΒ fight against excessive alcohol consumption at theΒ provincial and district levels. TheΒ study describes theΒ situation with theΒ consumption ofΒ alcoholic beverages in Russia at theΒ turn ofΒ theΒ XIXβXXΒ centuries, provides theΒ main provisions ofΒ theΒ state wine monopoly, introduced in 1895 with theΒ direct participation ofΒ theΒ Minister ofΒ Finance S.Β Yu.Β Witte. Based on theΒ Charter ofΒ Guardianship of Peopleβs Sobriety, theΒ authors describe their powers, composition, and features ofΒ work organization. Based on theΒ analysis ofΒ diverse sources (including unpublished archival sources), theΒ article characterizes theΒ diverse activities ofΒ guardianship in Russia at theΒ beginning ofΒ theΒ 20th century, as well as its assessment by contemporaries. TheΒ conclusion is made about theΒ relatively low efficiency ofΒ theΒ work ofΒ sober institutions due to their bureaucracy and insufficient funding. TheΒ article describes theΒ problem ofΒ reforming theΒ guardianship, which was discussed with varying intensity in theΒ 1900β1910s in theΒ Ministry ofΒ Finance, theΒ State Council, public and zemstvo circles. Special attention is paid to theΒ analysis ofΒ theΒ problems faced by theΒ guardianship ofΒ popular sobriety during theΒ First World War after theΒ introduction ofΒ theΒ βProhibitionβ. TheΒ scientific novelty ofΒ theΒ research lies in anΒ attempt to analyze theΒ entire set ofΒ issues related to theΒ activities ofΒ guardianship in theΒ period under review, starting from documents of aΒ legal and office-work nature, statistical materials, periodicals, journalistic and memoir literature
Hydrodynamical Simulation of Astrophysical Flows: High-Performance GPU Implementation
We present a new hydrodynamical code GPUPEGAS 2.0 for 3D simulation of astrophysical flows using the GPUs. This code is an extension of GPUPEGAS code developed in 2014 for simulation of interacting galaxies. GPUPEGAS 2.0 is based on the Authors' numerical method of high order of accuracy for smooth solutions with small dissipation of the solution in discontinuities. The high order of accuracy and small dissipation are achieved by using the piecewise-linear representation of the physical variables in each dimension. The Rusanov flux allows one to simply vectorize the solution of the Riemann problem. The code was implemented for the cluster supercomputers NKS-30T (Siberian Supercomputer Center, SB RAS) and Uran (Institute of Mathematics and Mechanics, UrB RAS) using the hybrid MPI+CUDA technology. To avoid the compute capability-specific implementations of reduction routines, the Thrust library was used. The optimal parameters for kernel function were found for the three-dimensional computation grid. The Sedov point blast problem was used as a main test one. The numerical experiment was performed to simulate the hydrodynamics of the type II supernova explosion for the grid size of 2563. A set of experiments was performed to study performance and scalability of the developed code. The performance of 25 GFLOPS was achieved using a single Tesla M2090 GPU. The speedup of 3 times was achieved using a node with 4 GPUs. By using 16 GPUs, 70% scalability was achieved. Β© 2019 IOP Publishing Ltd. All rights reserved.Russian Science Foundation,Β RSF: 18-11-00044The work of Igor Kulikov and Igor Chernykh was supported by Russian Science Foundation (project no. 18-11-00044)
- β¦