167 research outputs found

    An efficient control of Curie temperature TCT_C in Ni-Mn-Ga alloys

    Full text link
    We have studied the influence of alloying with a fourth element on the temperature of ferromagnetic ordering TCT_C in Ni-Mn-Ga Heusler alloys. It is found that TCT_C increases or decreases, depending on the substitution. The increase of TCT_C is observed when Ni is substituted by either Fe or Co. On the contrary, the substitution of Mn for V or Ga for In strongly reduces TCT_C.Comment: presented at ICM-200

    Combined effect of magnetic field and hydrostatic pressure on the phase transitions exhibited by Ni-Mn-In metamagnetic shape memory alloy

    Get PDF
    We present a systematic study of the magnetostructural and magnetic transitions in the prototype metamagnetic shape memory alloy Ni50Mn34.5In15.5 under hydrostatic pressure and combined pressure and magnetic field. Pressure extends the area of stability of the antiferromagnetic martensitic phase. At low magnetic field the pressure derivatives of the Curie temperatures of austenite, TCA, and martensite, TCM, show opposite signs. This fact is described in the framework of the Landau thermodynamic model as arising from a weak long-range antiferromagnetic state of martensite. Two volume magnetoelastic constants were estimated using the experimental values of the pressure derivatives of TCA and TCM. A correlation between the signs of the pressure shifts of TCA, and TCM and the distance between Mn-Mn nearest neighbours is established, which matches the empirical Castelliz-Kanomata diagram. The entropy change at martensitic transformation (MT), ?SMT, grows up when the MT temperature, TM, is approaching TCA under the influence of pressure, but under constant non-zero pressure this dependence is inverse.The financial supports from Ministry of Science, Innovations and Universities (projects MAT2017-83631-C3-3-R and RTI2018-094683-B-C53-54) and from the Basque Government Department of Education (project IT1245-19) are greatly acknowledged

    SCIENTIFIC AND APPLIED ASPECTS OF FERROMAGNETIC SHAPE MEMORY ALLOYS

    Get PDF
    The underlying mechanisms responsible for the giant magnetic or mechanical field-induced-strains in the Ni- Mn-Ga ferromagnetic shape memory alloys are briefly discussed. The fundamental aspect is illustrated by experimental data related to the lattice instability and composition dependence of magnetization alongside literature results. An implementation of Ni-Mn-Ga single crystal as a strain sensor is described

    Coexistence of ferro- and antiferromagnetic order in Mn-doped Ni2_2MnGa

    Get PDF
    Ni-Mn-Ga is interesting as a prototype of a magnetic shape-memory alloy showing large magnetic field induced strains. We present here results for the magnetic ordering of Mn-rich Ni-Mn-Ga alloys based on both experiments and theory. Experimental trends for the composition dependence of the magnetization are measured by a vibrating sample magnetometer (VSM) in magnetic fields of up to several tesla and at low temperatures. The saturation magnetization has a maximum near the stoichiometric composition and it decreases with increasing Mn content. This unexpected behaviour is interpreted via first-principles calculations within the density-functional theory. We show that extra Mn atoms are antiferromagnetically aligned to the other moments, which explains the dependence of the magnetization on composition. In addition, the effect of Mn doping on the stabilization of the structural phases and on the magnetic anisotropy energy is demonstrated.Comment: 4 pages, 3 figure

    New effective sorbents for purification of aqueous media from technogenic contaminants

    No full text
    Created are the sorbents based on silica gel non-covalently modified with partially hydrogenated heterocyclic compounds (PHHC), containing nitrogen as donor atoms for purification of aqueous media from technogenic contaminants. The investigations show that the modified silica gel is characterized by a sorption capacity relatively higher than that of unmodified one. The sorption degree of metal ions is studied depending on their concentrations, total mineralization and pH value of the solutions. Conditions for selective sorption of microquantities of Eu³⁺ which has been used as chemically identical to ²⁴¹Am are described. Moreover it was shown that PHHC modified silica gel was potential to use as the sorbent to concentrate the Eu³⁺ and Sr²⁺ metal ions with initial concentrations near 1 mg∙L⁻¹ for the quantitative analysis. Also the possible mechanism of metal ion sorption on the developed sorbents was proposed. Remove selecte

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV

    Get PDF
    We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let

    Azimuthal anisotropy at RHIC: the first and fourth harmonics

    Get PDF
    We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data tables are at http://www.star.bnl.gov/central/publications/pubDetail.php?id=3

    Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at sqrt(s_nn) = 130 GeV

    Full text link
    The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.Comment: 6 pages, 3 figure
    corecore