19 research outputs found

    3-uniform hypergraphs: modular decomposition and realization by tournaments

    Full text link
    Let HH be a 3-uniform hypergraph. A tournament TT defined on V(T)=V(H)V(T)=V(H) is a realization of HH if the edges of HH are exactly the 3-element subsets of V(T)V(T) that induce 3-cycles. We characterize the 3-uniform hypergraphs that admit realizations by using a suitable modular decomposition

    Population density of the spur-thighed tortoise Testudo graeca declines after fire in north-western Africa

    Get PDF
    Fire is a key ecological process in several biomes worldwide. Over recent decades, human activities (e.g. rural abandonment, monoculture plantations) and global warming are magnifying the risk of fire, with changes in fire intensity and frequency. Here, we offer the first study that examines the impact of fire on the spur-thighed tortoise Testudo graeca living in a native cork oak forest and pine plantation in north-western Africa. A total of 44 transects (22 burnt and 22 unburnt) were sampled at 8 sites affected by fires of natural cork oak forest and pine plantation with 8 surveys per site in 2015–2017 (264 hours of sampling effort). Tortoise densities were estimated with line-transect distance sampling. The detection probability of tortoises was higher in burnt (0.915) than unburnt (0.474) transects. The density of tortoises was negatively associated with elevation and declined with fire by c. 50% in both forest types. The negative response of T. graeca to fire should be considered in conservation planning of this species in north-western Africa in a future scenario of changes in fire regime.BC, SF, and XS received a grant coded (2015-1) from Instituto de Estudios Ceutíes (https://www.ieceuties.org) to cover part of the fieldwork. The work of EG and RCRC was supported by the Spanish Ministry of Economy, Industry and Competitiveness and European Regional Development Fund (Project CGL2015- 64144; MINECO/FEDER)

    Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway

    Get PDF
    Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.Norman B. Leventhal FellowshipUnited States. National Institutes of Health (NIH T32 MH074249)United States. National Institutes of Health (NIH RO1 NS051874

    Quercus suber forest and Pinus plantations show different post-fire resilience in Mediterranean north-western Africa

    No full text
    International audienceAbstractKey messageIn the African rim of the Western Mediterranean Basin, cork oak forests and pine plantations coexist. Under similar fire regimes, cork oak forest is more resilient in terms of habitat structure (canopy, understory, and complexity of vegetation strata) than pine plantation. By contrast, both woodland types show similar resilience in plant species composition. Resilience in habitat structure varies between the two woodland types because of the resprouting and seeding strategies of cork oak and pine species, respectively. These differences can be relevant for the conservation of biodiversity of forested ecosystems in a future scenario of increased fire frequency and scale in the Mediterranean basin.ContextWildfires have major impacts on ecosystems globally. In fire-prone regions, plant species have developed adaptive traits (resprouting and seeding) to survive and persist due to long evolutionary coexistence with fire. In the African rim of the Western Mediterranean Basin, cork oak forest and pine plantation are the most frequently burnt woodlands. Both species have different strategies to respond fire: cork oak is a resprouter while pines are mostly seeders.AimsWe have examined the hypothesis that pine plantations are less resilient in habitat structure (canopy, understory, diversity of vegetation strata) and plant composition than cork oak woodlands.MethodsThe habitat structure and plant species composition were measured in 30 burnt and 30 unburnt 700-m transects at 12 burnt sites from north-western Africa, where the two forest types can coexist. Habitat structure and plant species composition were compared between burnt and unburnt transects from cork oak and pine plantation woodlands with generalized linear mixed models and general linear models.ResultsThe results showed significant interaction effect of fire and forest type, since cork oak forest was more resilient to fire than was pine plantation in habitat structure. By contrast, both forest types were resilient to fire in the composition of the plant communities, i.e., plant composition prior to fire did not change afterwards.ConclusionThe higher structural resilience of cork oak forest compared to pine plantation is related to the resprouting and seeding strategies, respectively, of the dominant tree species. Differences in the responses to fire need to be considered in conservation planning for the maintenance of the Mediterranean biodiversity in a future scenario of changes in fire regime

    3-uniform hypergraphs: modular decomposition and realization by tournaments

    No full text
    Let HH be a 3-uniform hypergraph. A tournament TT defined on V(T)=V(H)V(T)=V(H) is a realization of HH if the edges of HH are exactly the 3-element subsets of V(T)V(T) that induce 3-cycles. We characterize the 3-uniform hypergraphs that admit realizations by using a suitable modular decomposition

    Critical 3-Hypergraphs

    No full text
    International audienceGiven a 3-hypergraph H, a subset M of V (H) is a module of H if for each e ∈ E(H) such that e∩M ≠ ∅ and e∖M ≠ ∅, there exists m ∈ M such that e ∩ M = {m} and for every n ∈ M , we have (e ∖ {m}) ∪ {n} ∈ E(H). For example, ∅, V (H) and {v}, where v ∈ V (H), are modules of H, called trivial modules. A 3-hypergraph with at least three vertices is prime if all its modules are trivial. Furthermore, a prime 3-hypergraph is critical if all its induced subhypergraphs, obtained by removing one vertex, are not prime. We characterize the critical 3-hypergraphs

    3-uniform hypergraphs: modular decomposition and realization by tournaments

    No full text
    Let HH be a 3-uniform hypergraph. A tournament TT defined on V(T)=V(H)V(T)=V(H) is a realization of HH if the edges of HH are exactly the 3-element subsets of V(T)V(T) that induce 3-cycles. We characterize the 3-uniform hypergraphs that admit realizations by using a suitable modular decomposition
    corecore