13 research outputs found
Chiroptical studies on brevianamide B : vibrational and electronic circular dichroism confronted
Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) are highly sensitive techniques to probe molecular conformation, configuration, solvation and aggregation. Here we report the application of these techniques to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and VCD spectra with the density functional theory (DFT) simulated counterparts establishes that VCD is the more reliable technique to assign absolute configuration due to the larger functional and dispersion dependence of computed ECD spectra. Despite a low amount of available material, and a relatively unusual example of using VCD carbonyl multiplets, the absolute configuration could be reliably predicted, strengthening the case for application of VCD in the study of complex natural products. Spectral and crystallographic evidence for or against the formation of a dimeric aggregate is discussed; in solution the VCD spectra strongly suggest only monomeric species are present
Mechanistic and chiroptical studies on the desulfurization of epidithiodioxopiperazines reveal universal retention of configuration at the bridgehead carbon atoms
The stereochemistry of the desulfurization products of chiral natural and synthetic 3,6-epidithiodiketopiperazines (ETPs) is specified inconsistently in the literature. Qualitative mechanisms have been put forward to explain apparently divergent stereochemical pathways, however the quantita-tive feasibility of such mechanistic pathways has not been assessed. We report a computational study which reveals that desulfurization of ETPs should occur universally with retention of configuration. While the majority of stereochemically assigned and reassigned cases fit this model, until now desulfu-rization of a synthetic gliotoxin analogue (7) has remained assigned as proceeding via inversion of con-figuration. Through detailed chiroptical studies, comparing experimentally obtained optical rotation val-ues, electronic circular dichroism spectra, and vibrational circular dichroism spectra to their computa-tionally simulated counterparts, as well as using chemical derivatization studies, we have unambiguous-ly demonstrated that, contrary to its current assignment in the literature, the desulfurization of a synthet-ic ETP (7) also proceeds with retention of configuration
Mechanistic and chiroptical studies on the desulfurization of epidithiodioxopiperazines reveal universal retention of configuration at the bridgehead carbon atoms.
<p>2,3,10,10-Tetramethyl-2,3-dihydro-1H-3,10a-epithiopyrazino[1,2-a]indole-1,4(10H)-dione (<strong>8</strong>). To a solution of gliotoxin analogue (7, 33 mg, 0.10 mmol) in dioxane (8 mL) was added PPh3 (33 mg, 0.16 mmol) and the resulting mixture was stirred overnight at room temperature. The solvent was then re-moved under reduced pressure and the pink residue was purified by column chromatography [PEEtOAc (100:0 to 95:5)] to afford a colorless oil (19 mg, 64%) which was recrystallized from CH2Cl2 to give a white solid: m.p. 58 60 C; IR (neat) 1720, 1456, 1387, 1288, 1134 cm-1; 1H NMR (400 MHz, CDCl3) 8.54 (app-d, J = 7.8 Hz, 1H), 7.25 (td, J = 7.8, 1.0 Hz, 1H), 7.20 (dd, J = 7.8, 1.0 Hz, 1H), 7.13 (td, J = 7.8, 1.0 Hz, 1H), 2.96 (s, 3H), 1.83 (s, 3H), 1.75 (s, 3H), 1.48 (s, 3H); 13C NMR (100 MHz, CDCl3) 172.5, 172.0, 139.7, 138.1, 128.1, 124.7, 122.4, 113.6, 86.6, 75.1, 43.5, 27.2, 26.3, 25.7, 13.3; MS (CI) m/z 289 (M+H)+, 306 (M+NH4)+; HRMS (CI) m/z calcd for C15H17N2O2S [(M+H)+] 289.1011, found: 289.1026. The obtained enantiomers could be separated by chiral HPLC (OD+ semiprep column, Hexane : Isopropanol, 90:10): First peak: [α]25D -47.5 (c 1.12, CH2Cl2), Second peak: [α]25D +34.4 (c 1.12, CH2Cl2).</p
Mechanistic and Chiroptical Studies on the Desulfurization of Epidithiodioxopiperazines Reveal Universal Retention of Configuration at the Bridgehead Carbon Atoms
The stereochemistry of the desulfurization
products of chiral natural
and synthetic 3,6-epidithiodiketopiperazines (ETPs) is specified inconsistently
in the literature. Qualitative mechanisms have been put forward to
explain apparently divergent stereochemical pathways, but the quantitative
feasibility of such mechanistic pathways has not been assessed. We
report a computational study revealing that desulfurization of ETPs
should occur universally with retention of configuration. While the
majority of stereochemically assigned and reassigned cases fit this
model, until now desulfurization of the synthetic gliotoxin analogue
shown has remained assigned as proceeding via inversion of configuration.
Through detailed chiroptical studies comparing experimentally obtained
optical rotation values, electronic circular dichroism spectra, and
vibrational circular dichroism spectra to their computationally simulated
counterparts as well as chemical derivatization studies, we have unambiguously
demonstrated that contrary to its current assignment in the literature,
the desulfurization of this synthetic ETP also proceeds with retention
of configuration
On the determination of the stereochemistry of semisynthetic natural product analogues using chiroptical spectroscopy : desulfurization of epidithiodioxopiperazine fungal metabolites
Isolation and semisynthetic modification of the fungal metabolite chaetocin gave access to a desulfurized analogue of this natural product. Detailed chiroptical studies, comparing experimentally obtained optical rotation values, electronic circular dichroism spectra, and vibrational circular dichroism spectra to computationally simulated ones, reveal the desulfurization of chaetocin to unambiguously proceed with retention of configuration. Consideration of the plausible mechanisms for this process highlighted inconsistencies in the stereochemical assignment of related molecules in the literature. This in turn allowed the stereochemical reassignment of the natural product analogue dethiodehydrogliotoxin
Dual EZH2 and EHMT2 histone methyltransferase inhibition increases biological efficacy in breast cancer cells
Abstract
Background
Many cancers show aberrant silencing of gene expression and overexpression of histone methyltransferases. The histone methyltransferases (HKMT) EZH2 and EHMT2 maintain the repressive chromatin histone methylation marks H3K27me and H3K9me, respectively, which are associated with transcriptional silencing. Although selective HKMT inhibitors reduce levels of individual repressive marks, removal of H3K27me3 by specific EZH2 inhibitors, for instance, may not be sufficient for inducing the expression of genes with multiple repressive marks.
Results
We report that gene expression and inhibition of triple negative breast cancer cell growth (MDA-MB-231) are markedly increased when targeting both EZH2 and EHMT2, either by siRNA knockdown or pharmacological inhibition, rather than either enzyme independently. Indeed, expression of certain genes is only induced upon dual inhibition. We sought to identify compounds which showed evidence of dual EZH2 and EHMT2 inhibition. Using a cell-based assay, based on the substrate competitive EHMT2 inhibitor BIX01294, we have identified proof-of-concept compounds that induce re-expression of a subset of genes consistent with dual HKMT inhibition. Chromatin immunoprecipitation verified a decrease in silencing marks and an increase in permissive marks at the promoter and transcription start site of re-expressed genes, while Western analysis showed reduction in global levels of H3K27me3 and H3K9me3. The compounds inhibit growth in a panel of breast cancer and lymphoma cell lines with low to sub-micromolar IC50s. Biochemically, the compounds are substrate competitive inhibitors against both EZH2 and EHMT1/2.
Conclusions
We have demonstrated that dual inhibition of EZH2 and EHMT2 is more effective at eliciting biological responses of gene transcription and cancer cell growth inhibition compared to inhibition of single HKMTs, and we report the first dual EZH2-EHMT1/2 substrate competitive inhibitors that are functional in cells
Chiroptical studies on brevianamide B: Vibrational and Electronic Circular Dichroism confronted
Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) are highly sensitive techniques to probe molecular conformation, configuration, solvation and aggregation. Here we report the application of these techniques to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and VCD spectra with the density functional theory (DFT) simulated counterparts establishes that VCD is the more reliable technique to assign absolute configuration due to the larger functional and dispersion dependence of computed ECD spectra. Despite a low amount of available material, and a relatively unusual example of using VCD carbonyl multiplets, the absolute configuration could be reliably predicted, strengthening the case for application of VCD in the study of complex natural products. Spectral evidence for or against the formation of a dimeric aggregate is discussed; in solution the VCD spectra strongly suggest only monomeric species are present.Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) are highly sensitive techniques to probe molecular conformation, configuration, solvation and aggregation. Here we report the application of these techniques to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and VCD spectra with the density functional theory (DFT) simulated counterparts establishes that VCD is the more reliable technique to assign absolute configuration due to the larger functional and dispersion dependence of computed ECD spectra. Despite a low amount of available material, and a relatively unusual example of using VCD carbonyl multiplets, the absolute configuration could be reliably predicted, strengthening the case for application of VCD in the study of complex natural products. Spectral evidence for or against the formation of a dimeric aggregate is discussed; in solution the VCD spectra strongly suggest only monomeric species are present.Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) are highly sensitive techniques to probe molecular conformation, configuration, solvation and aggregation. Here we report the application of these techniques to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and VCD spectra with the density functional theory (DFT) simulated counterparts establishes that VCD is the more reliable technique to assign absolute configuration due to the larger functional and dispersion dependence of computed ECD spectra. Despite a low amount of available material, and a relatively unusual example of using VCD carbonyl multiplets, the absolute configuration could be reliably predicted, strengthening the case for application of VCD in the study of complex natural products. Spectral evidence for or against the formation of a dimeric aggregate is discussed; in solution the VCD spectra strongly suggest only monomeric species are present