141 research outputs found

    Lower Bounds for Pinning Lines by Balls

    Get PDF
    A line L is a transversal to a family F of convex objects in R^d if it intersects every member of F. In this paper we show that for every integer d>2 there exists a family of 2d-1 pairwise disjoint unit balls in R^d with the property that every subfamily of size 2d-2 admits a transversal, yet any line misses at least one member of the family. This answers a question of Danzer from 1957

    Computing a Minimum-Dilation Spanning Tree is NP-hard

    Get PDF
    In a geometric network G = (S, E), the graph distance between two vertices u, v in S is the length of the shortest path in G connecting u to v. The dilation of G is the maximum factor by which the graph distance of a pair of vertices differs from their Euclidean distance. We show that given a set S of n points with integer coordinates in the plane and a rational dilation delta > 1, it is NP-hard to determine whether a spanning tree of S with dilation at most delta exists

    Set Systems and Families of Permutations with Small Traces

    Get PDF
    We study the maximum size of a set system on nn elements whose trace on any bb elements has size at most kk. We show that if for some b≥i≥0b \ge i \ge 0 the shatter function fRf_R of a set system ([n],R)([n],R) satisfies fR(b)<2i(b−i+1)f_R(b) < 2^i(b-i+1) then ∣R∣=O(ni)|R| = O(n^i); this generalizes Sauer's Lemma on the size of set systems with bounded VC-dimension. We use this bound to delineate the main growth rates for the same problem on families of permutations, where the trace corresponds to the inclusion for permutations. This is related to a question of Raz on families of permutations with bounded VC-dimension that generalizes the Stanley-Wilf conjecture on permutations with excluded patterns

    Geometric Permutations of Non-Overlapping Unit Balls Revisited

    Full text link
    Given four congruent balls A,B,C,DA, B, C, D in RdR^{d} that have disjoint interior and admit a line that intersects them in the order ABCDABCD, we show that the distance between the centers of consecutive balls is smaller than the distance between the centers of AA and DD. This allows us to give a new short proof that nn interior-disjoint congruent balls admit at most three geometric permutations, two if n≥7n\ge 7. We also make a conjecture that would imply that n≥4n\geq 4 such balls admit at most two geometric permutations, and show that if the conjecture is false, then there is a counter-example of a highly degenerate nature

    The Hadwiger Number of Jordan Regions Is Unbounded

    Full text link

    On the Number of Edges of Fan-Crossing Free Graphs

    Full text link
    A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges g,e1,...ekg,e_1,...e_k, such that e1,e2,...eke_1,e_2,...e_k have a common endpoint and gg crosses all eie_i. We prove a tight bound of 4n-8 on the maximum number of edges of a 2-fan-crossing free graph, and a tight 4n-9 bound for a straight-edge drawing. For k > 2, we prove an upper bound of 3(k-1)(n-2) edges. We also discuss generalizations to monotone graph properties
    • …
    corecore