141 research outputs found
Lower Bounds for Pinning Lines by Balls
A line L is a transversal to a family F of convex objects in R^d if it
intersects every member of F. In this paper we show that for every integer d>2
there exists a family of 2d-1 pairwise disjoint unit balls in R^d with the
property that every subfamily of size 2d-2 admits a transversal, yet any line
misses at least one member of the family. This answers a question of Danzer
from 1957
Computing a Minimum-Dilation Spanning Tree is NP-hard
In a geometric network G = (S, E), the graph distance between two vertices u,
v in S is the length of the shortest path in G connecting u to v. The dilation
of G is the maximum factor by which the graph distance of a pair of vertices
differs from their Euclidean distance. We show that given a set S of n points
with integer coordinates in the plane and a rational dilation delta > 1, it is
NP-hard to determine whether a spanning tree of S with dilation at most delta
exists
Set Systems and Families of Permutations with Small Traces
We study the maximum size of a set system on elements whose trace on any
elements has size at most . We show that if for some the
shatter function of a set system satisfies then ; this generalizes Sauer's Lemma on the size of
set systems with bounded VC-dimension. We use this bound to delineate the main
growth rates for the same problem on families of permutations, where the trace
corresponds to the inclusion for permutations. This is related to a question of
Raz on families of permutations with bounded VC-dimension that generalizes the
Stanley-Wilf conjecture on permutations with excluded patterns
Geometric Permutations of Non-Overlapping Unit Balls Revisited
Given four congruent balls in that have disjoint
interior and admit a line that intersects them in the order , we show
that the distance between the centers of consecutive balls is smaller than the
distance between the centers of and . This allows us to give a new short
proof that interior-disjoint congruent balls admit at most three geometric
permutations, two if . We also make a conjecture that would imply that
such balls admit at most two geometric permutations, and show that if
the conjecture is false, then there is a counter-example of a highly degenerate
nature
On the Number of Edges of Fan-Crossing Free Graphs
A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1
if there are no k+1 edges , such that have a
common endpoint and crosses all . We prove a tight bound of 4n-8 on
the maximum number of edges of a 2-fan-crossing free graph, and a tight 4n-9
bound for a straight-edge drawing. For k > 2, we prove an upper bound of
3(k-1)(n-2) edges. We also discuss generalizations to monotone graph
properties
- …