149 research outputs found

    Time-varying influence of interest rates on stock returns: evidence from China

    Get PDF
    Whether a stock market should matter or not when monetary policy is concerned seems to be a controversial issue. The purpose of this study is to indicate whether the central bank should use monetary policy to help the stock market or not. Based on macroeconomic data such as interest rate and the stock market, we adopt a novel Bayesian time-varying regression model and determine that the impact of interest rate changes on stock returns varies over time in China, after controlling various macroeconomic factors. Although on average interest rates negatively impact stock price returns, they tend to have an abnormal positive effect at market high points, following a time-varying dynamic pattern. Surprisingly, during periods of overheated economic development, an increase in interest rates cannot suppress the rise in stock prices. Therefore, policymakers need to pay attention when accelerating the marketisation of interest rates and initiating the preventive role of timely and strategic adjustment of interest rates

    Probing phase transition in neutron stars via the crust-core interfacial mode

    Full text link
    Gravitational waves emitted from the binary neutron star (BNS) systems can carry information about the dense matter phase in these compact stars. The crust-core interfacial mode is an oscillation mode in a neutron star and it depends mostly on the equation of the state of the matter in the crust-core transition region. This mode can be resonantly excited by the tidal field of an inspiraling-in BNS system, thereby affecting the emitted gravitational waves, and hence could be used to probe the equation of state in the crust-core transition region. In this work, we investigate in detail how the first-order phase transition inside the neutron star affects the properties of the crust-core interfacial mode, using a Newtonian fluid perturbation theory on a general relativistic background solution of the stellar structure. Two possible types of phase transitions are considered: (1) the phase transitions happen in the fluid core but near the crust-core interface, which results in density discontinuities; and (2) the strong interaction phase transitions in the dense core (as in the conventional hybrid star case). These phase transitions' impacts on interfacial mode properties are discussed. In particular, the former phase transition has a minor effect on the M-R relation and the adiabatic tidal deformability, but can significantly affect the interfacial mode frequency and thereby could be probed using gravitational waves. For the BNS systems, we discuss the possible observational signatures of these phase transitions in the gravitational waveforms and their detectability. Our work enriches the exploration of the physical properties of the crust-core interfacial mode and provides a promising method for probing the phase transition using the seismology of a compact star.Comment: 18 pages, 14 figure

    On Forecast Stability

    Full text link
    Forecasts are typically not produced in a vacuum but in a business context, where forecasts are generated on a regular basis and interact with each other. For decisions, it may be important that forecasts do not change arbitrarily, and are stable in some sense. However, this area has received only limited attention in the forecasting literature. In this paper, we explore two types of forecast stability that we call vertical stability and horizontal stability. The existing works in the literature are only applicable to certain base models and extending these frameworks to be compatible with any base model is not straightforward. Furthermore, these frameworks can only stabilise the forecasts vertically. To fill this gap, we propose a simple linear-interpolation-based approach that is applicable to stabilise the forecasts provided by any base model vertically and horizontally. The approach can produce both accurate and stable forecasts. Using N-BEATS, Pooled Regression and LightGBM as the base models, in our evaluation on four publicly available datasets, the proposed framework is able to achieve significantly higher stability and/or accuracy compared to a set of benchmarks including a state-of-the-art forecast stabilisation method across three error metrics and six stability metrics

    Non-Markovian Dynamics of Entanglement for Multipartite Systems

    Full text link
    Entanglement dynamics for a couple of two-level atoms interacting with independent structured reservoirs is studied using a non-perturbative approach. It is shown that the revival of atom entanglement is not necessarily accompanied by the sudden death of reservoir entanglement, and vice versa. In fact, atom entanglement can revive before, simultaneously or even after the disentanglement of reservoirs. Using a novel method based on the population analysis for the excited atomic state, we present the quantitative criteria for the revival and death phenomena. For giving a more physically intuitive insight, the quasimode Hamiltonian method is applied. Our quantitative analysis is helpful for the practical engineering of entanglement.Comment: 10 pages and 4 figure

    Energy Down-Conversion Cs3Cu2Cl5 Nanocrystals for Boosting the Efficiency of UV Photodetector

    Get PDF
    Zero-dimension (0-D) lead halide perovskite nanocrystals (NCs) have attracted a sight of interest in the field of optoelectronic devices due to their outstanding properties, such as high photoluminescence quantum yield (PLQY) and size- and composition-controlled tunable emission wavelengths. However, the toxicity of lead (Pb) element in the lead perovskite NCs is the bottleneck for the commercial application of perovskite NCs. Herein, we report a facile ligand-assisted synthesis to achieve lead-free Cs3Cu2Cl5 NCs with a high PLQY of ∼70% and good stability against environmental oxygen/moisture as a promising down-conversion material. It has good merits of high PLQY and large Stokes shift (∼300 nm) originated from the effect of Jahn–Teller distortion and self-trapped excitons (STEs). Furthermore, the Cs3Cu2Cl5 NCs embedded composite films (NCCFs) were utilized to enhance the ultraviolet (UV) response of silicon (Si) photodetectors. External quantum efficiency (EQE) measurements show that the UV response can be greatly improved from 3.3 to 19.9% @ 295 nm based on NCCFs combined with Si photodiodes. Our work offers an effective approach to develop highly efficient and stable lead-free Cs3Cu2Cl5 NCs for the application in the solar-blind UV photodetector

    Physiological and Transcriptome Analyses Reveal Short-Term Responses and Formation of Memory Under Drought Stress in Rice

    Get PDF
    In some plants, exposure to stress can induce a memory response, which appears to play an important role in adaptation to recurrent stress environments. However, whether rice exhibits drought stress memory and the molecular mechanisms that might underlie this process have remained unclear. Here, we ensured that rice drought memory was established after cycles of mild drought and re-watering treatment, and studied gene expression by whole-transcriptome strand-specific RNA sequencing (ssRNA-seq). We detected 6,885 transcripts and 238 lncRNAs involved in the drought memory response, grouped into 16 distinct patterns. Notably, the identified genes of dosage memory generally did not respond to the initial drought treatment. Our results demonstrate that stress memory can be developed in rice under appropriate water deficient stress, and lncRNA, DNA methylation and endogenous phytohormones (especially abscisic acid) participate in rice short-term drought memory, possibly acting as memory factors to activate drought-related memory transcripts in pathways such as photosynthesis and proline biosynthesis, to respond to the subsequent stresses

    Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water

    Get PDF
    A novel graphene oxide-molecularly imprinted polymers (GO-MIPs) was prepared and applied for selective extraction and preconcentration of bis(2-ethylhexyl) phthalate (DEHP) in environmental water samples by using the dispersive solid-phase microextraction (DSPME) method. The GO-MIPs was synthesized via precipitation polymerization using GO, DEHP, methacrylic acid, and ethylene dimethacrylate as supporting materials, template molecules, functional monomer, and cross-linker, respectively. The prepared GO-MIPs were characterized by scanning electron microscope and Fourier transform infrared spectroscopy. The GO-MIPs-DSPME conditions including type and volume of elution solvents, adsorbents amount, initial concentration of DEHP, pH and ionic strength of water samples were investigated. Under optimized conditions, the DEHP was selectively and effectively extracted in real water samples and enrichment factors of over 100-fold were achieved. Good linearity was obtained with correlation coefficients (R2) over 0.999 and the detection limit (S/N = 3) was 0.92 ng mL−1. The average recoveries of the spiked samples at three concentration levels of DEHP ranged from 82% to 92% with the relative standard deviations less than 6.7%. The results indicated that the proposed GO-MIPs-DSPME extraction protocol combined with HPLC-UV determination could be applied for selective and sensitive analysis of trace DEHP phthalate in environmental water samples

    The relationship between niche breadth and range size of beech (Fagus) species worldwide

    Get PDF
    Aim: This work explores whether the commonly observed positive range size–niche breadth relationship exists for Fagus, one of the most dominant and widespread broad-leaved deciduous tree genera in temperate forests of the Northern Hemisphere. Additionally, we ask whether the 10 extant Fagus species’ niche breadths and climatic tolerances are under phylogenetic control. Location: Northern Hemisphere temperate forests. Taxon: Fagus L. Methods: Combining the global vegetation database sPlot with Chinese vegetation data, we extracted 107,758 relevés containing Fagus species. We estimated biotic and climatic niche breadths per species using plot-based co-occurrence data and a resource-based approach, respectively. We examined the relationships of these estimates with range size and tested for their phylogenetic signal, prior to which a Random Forest (RF) analysis was applied to test which climatic properties are most conserved across the Fagus species. Results: Neither biotic niche breadth nor climatic niche breadth was correlated with range size, and the two niche breadths were incongruent as well. Notably, the widespread North American F. grandifolia had a distinctly smaller biotic niche breadth than the Chinese Fagus species (F. engleriana, F. hayatae, F. longipetiolata and F. lucida) with restricted distributions in isolated mountains. The RF analysis revealed that cold tolerance did not differ among the 10 species, and thus may represent an ancestral, fixed trait. In addition, neither biotic nor climatic niche breadths are under phylogenetic control. Main Conclusions: We interpret the lack of a general positive range size–niche breadth relationship within the genus Fagus as a result of the widespread distribution, high among-region variation in available niche space, landscape heterogeneity and Quaternary history. The results hold when estimating niche sizes either by fine-scale co-occurrence data or coarse-scale climate data, suggesting a mechanistic link between factors operating across spatial scales. Besides, there was no evidence for diverging ecological specialization within the genus Fagus
    corecore