9,450 research outputs found

    Design of cross-coupled CMAC for contour-following – a reinforcement-based ILC approach

    Get PDF
    One of the most popular applications of a bi-axial motion stage is precision motion control. The reduction of tracking error and contour error is one of the most coveted goals in precision motion control systems. The accuracy of a motion control system is often affected by external disturbances. In addition, system non-linearity such as friction also represents a major hurdle to motion precision. In order to deal with the aforementioned problem, this paper proposes a fuzzy logic-based Reinforcement Iterative Learning Control (RILC) and a Cross-Coupled Cerebellar Model Articulation Controller (CCCMAC). In particular, the proposed fuzzy logicbased RILC and a LuGre friction model-based compensation approach are exploited to improve motion accuracy. The fuzzy logic-based RILC aims at reducing tracking error and compensating for external disturbance, while the LuGre friction model is responsible for friction compensation. In addition, the CCCMAC consisting of a cerebellar model articulation controller and a cross-coupled controller aims at reducing contour error and dealing with the problem of dynamics mismatch between different axes. Performance comparisons between the proposed fuzzy logic-based Reinforcement Iterative Learning Cross-Coupled Cerebellar Model Articulation Controller (RIL–CCCMAC) and several existing control schemes are conducted on a bi-axial motion stage. Experimental results verify the effectiveness of the proposed RIL–CCCMAC

    Influence of the Anteromedial Portal and Transtibial Drilling Technique on Femoral Tunnel Lengths in ACL Reconstruction: Results Using an MRI-Based Model

    Full text link
    BACKGROUND In anatomic anterior cruciate ligament (ACL) reconstruction, graft placement through the anteromedial (AM) portal technique requires more horizontal drilling of the femoral tunnel as compared with the transtibial (TT) technique, which may lead to a shorter femoral tunnel and affect graft-to-bone healing. The effect of coronal and sagittal femoral tunnel obliquity angle on femoral tunnel length has not been investigated. PURPOSE To compare the length of the femoral tunnels created with the TT technique versus the AM portal technique at different coronal and sagittal obliquity angles using the native femoral ACL center as the starting point of the femoral tunnel. The authors also assessed sex-based differences in tunnel lengths. STUDY DESIGN Descriptive laboratory study. METHODS Magnetic resonance imaging scans of 95 knees with an ACL rupture (55 men, 40 women; mean age, 26 years [range, 16-45 years]) were used to create 3-dimensional models of the femur. The femoral tunnel was simulated on each model using the TT and AM portal techniques; for the latter, several coronal and sagittal obliquity angles were simulated (coronal, 30°, 45°, and 60°; sagittal, 45° and 60°), representing the 10:00, 10:30, and 11:00 clockface positions for the right knee. The length of the femoral tunnel was compared between the techniques and between male and female patients. RESULTS The mean ± SD femoral tunnel length with the TT technique was 40.0 ± 6.8 mm. A significantly shorter tunnel was created with the AM portal technique at 30° coronal/45° sagittal (35.5 ± 3.8 mm), whereas a longer tunnel was created at 60° coronal/60° sagittal (53.3 ± 5.3 mm; P < .05 for both). The femoral tunnel created with the AM portal technique at 45° coronal/45° sagittal (40.7 ± 4.8 mm) created a similar tunnel length as the TT technique. For all techniques, the femoral tunnel was significantly shorter in female patients than male patients. CONCLUSION The coronal and sagittal obliquity angles of the femoral tunnel in ACL reconstruction can significantly affect its length. The femoral tunnel created with the AM portal technique at 45° coronal/45° sagittal was similar to that created with the TT technique. CLINICAL RELEVANCE Surgeons should be aware of the femoral tunnel shortening with lower coronal obliquity angles, especially in female patients

    Space Net Optimization

    Full text link
    Most metaheuristic algorithms rely on a few searched solutions to guide later searches during the convergence process for a simple reason: the limited computing resource of a computer makes it impossible to retain all the searched solutions. This also reveals that each search of most metaheuristic algorithms is just like a ballpark guess. To help address this issue, we present a novel metaheuristic algorithm called space net optimization (SNO). It is equipped with a new mechanism called space net; thus, making it possible for a metaheuristic algorithm to use most information provided by all searched solutions to depict the landscape of the solution space. With the space net, a metaheuristic algorithm is kind of like having a ``vision'' on the solution space. Simulation results show that SNO outperforms all the other metaheuristic algorithms compared in this study for a set of well-known single objective bound constrained problems in most cases.Comment: 12 pages, 6 figure

    Evidence of d-phenylglycine as delivering tool for improving l-dopa absorption

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>l</it>-Dopa has been used for Parkinson's disease management for a long time. However, its wide variety in the rate and the extent of absorption remained challenge in designing suitable therapeutic regime. We report here a design of using <it>d</it>-phenylglycine to guard <it>l</it>-dopa for better absorption in the intestine via intestinal peptide transporter I (PepT1).</p> <p>Methods</p> <p><it>d</it>-Phenylglycine was chemically attached on <it>l</it>-dopa to form <it>d</it>-phenylglycine-<it>l</it>-dopa as a dipeptide prodrug of <it>l</it>-dopa. The cross-membrane transport of this dipeptide and <it>l</it>-dopa via PepT1 was compared in brush-boarder membrane vesicle (BBMV) prepared from rat intestine. The intestinal absorption was compared by <it>in situ </it>jejunal perfusion in rats. The pharmacokinetics after i.v. and p.o. administration of both compounds were also compared in Wistar rats. The striatal dopamine released after i.v. administration of <it>d</it>-phenylglycine-<it>l</it>-dopa was collected by brain microdialysis and monitored by HPLC. Anti-Parkinsonism effect was determined by counting the rotation of 6-OHDA-treated unilateral striatal lesioned rats elicited rotation with (+)-methamphetamine (MA).</p> <p>Results</p> <p>The BBMV uptake of <it>d</it>-phenylglycine-<it>l</it>-dopa was inhibited by Gly-Pro, Gly-Phe and cephradine, the typical PepT1 substrates, but not by amino acids Phe or <it>l</it>-dopa. The cross-membrane permeability (Pm*) determined in rat jejunal perfusion of <it>d</it>-phenylglycine-<it>l</it>-dopa was higher than that of <it>l</it>-dopa (2.58 ± 0.14 vs. 0.94 ± 0.10). The oral bioavailability of <it>d</it>-phenylglycine-<it>l</it>-dopa was 31.7 times higher than that of <it>l-</it>dopa in rats. A sustained releasing profile of striatal dopamine was demonstrated after i. v. injection of <it>d</it>-phenylglycine-<it>l</it>-dopa (50 mg/kg), indicated that <it>d</it>-phenylglycine-<it>l</it>-dopa might be a prodrug of dopamine. <it>d</it>-Phenylglycine-<it>l</it>-dopa was more efficient than <it>l-</it>dopa in lowering the rotation of unilateral striatal lesioned rats (19.1 ± 1.7% vs. 9.9 ± 1.4%).</p> <p>Conclusion</p> <p>The BBMV uptake studies indicated that <it>d</it>-phenylglycine facilitated the transport of <it>l</it>-dopa through the intestinal PepT1 transporter. The higher jejunal permeability and the improved systemic bioavailability of <it>d-</it>phenylglycine-<it>l</it>-dopa in comparison to that of <it>l</it>-dopa suggested that <it>d-</it>phenylglycine is an effective delivery tool for improving the oral absorption of drugs like <it>l</it>-dopa with unsatisfactory pharmacokinetics. The gradual release of dopamine in brain striatum rendered this dipeptide as a potential dopamine sustained-releasing prodrug.</p
    corecore