13,136 research outputs found

    Thermoelectric DC conductivities with momentum dissipation from higher derivative gravity

    Get PDF
    We present a mechanism of momentum relaxation in higher derivative gravity by adding linear scalar fields to the Gauss-Bonnet theory. We analytically computed all of the DC thermoelectric conductivities in this theory by adopting the method given by Donos and Gauntlett in [arXiv:1406.4742]. The results show that the DC electric conductivity is not a monotonic function of the effective impurity parameter β\beta: in the small β\beta limit, the DC conductivity is dominated by the coherent phase, while for larger β\beta, pair creation contribution to the conductivity becomes dominant, signaling an incoherent phase. In addition, the DC heat conductivity is found independent of the Gauss-Bonnet coupling constant.Comment: 1+19 pages, 2 figures,typos in Eq.(40) correcte

    Glueball relevant study on isoscalars from Nf=2N_f=2 lattice QCD

    Full text link
    We perform a glueball-relevant study on isoscalars based on anisotropic Nf=2N_f=2 lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispersion relation. When qqˉq\bar{q} operator is included, we find the mass of this state does not change, and the qqˉq\bar{q} operator couples very weakly to this state. So this state is most likely a glueball state. For pseudoscalars, along with the exiting lattice results, our study implies that both the conventional qqˉq\bar{q} state η2\eta_2 (or η′\eta' in flavor SU(3)SU(3)) and a heavier glueball-like state with a mass of roughly 2.6 GeV exist in the spectrum of lattice QCD with dynamical quarks.Comment: 8 pages, 3 figures, 3 tables, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    The Clinical Efficacy of Yindanxinnaotong Soft Capsule in the Treatment of Stroke and Angina Pectoris: A Meta-Analysis

    Get PDF
    Objective. To systematically evaluate the clinical efficacy of Yindanxinnaotong (YD) soft capsule in adult patients with cardiovascular diseases (stroke and angina pectoris). Methods. We electronically searched databases including Medline, PubMed, Chinese National Knowledge Infrastructure (CNKI), Cqvip Database (VIP), and Wanfang Database for published articles of randomized controlled trials (RCTs) of YD capsule in treating stroke and angina pectoris. The meta-analysis was performed using RevMan 5.3 software. Results. 49 RCTs involving 6195 subjects with cardiovascular diseases (angina pectoris and stroke) were included. Compared with western conventional medicine (WCM) and/or other Chinese medicines, YD plus WCM therapeutic regimen could significantly improve the efficacy rate (RR = 1.21, 95% CI (1.17, 1.25), P<0.00001 for angina pectoris, RR = 1.24, 95% CI (1.18, 1.31), P<0.00001 for stroke), showing the clinical value. In addition, the therapeutic efficiency of WCM plus YD capsule regimen is better than that of WCM alone in improving CRP (MD = −2.07, 95% CI (−3.97, −0.17), P=0.03 <0.05) and TG (MD = −0.37, 95% CI (−0.52, −0.23), P<0.0001). Conclusion. YD is effective in the treatment of cardiovascular diseases (angina pectoris and stroke) in adults, and WCM plus YD therapeutic regimen can significantly improve the effective rate in the clinic

    Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region

    Full text link
    Recent experiments have confirmed the existence of rotational bands in the A \~ 110 mass region with very extended shapes lying between super- and hyper-deformation. Using the projected shell model, we make a first attempt to describe quantitatively such a band structure in 108Cd. Excellent agreement is achieved in the dynamic moment of inertia J(2) calculation. This allows us to suggest the spin values for the energy levels, which are experimentally unknown. It is found that at this large deformation, the sharply down-sloping orbitals in the proton i_{13/2} subshell are responsible for the irregularity in the experimental J(2), and the wave functions of the observed states have a dominant component of two-quasiparticles from these orbitals. Measurement of transition quadrupole moments and g-factors will test these findings, and thus can provide a deeper understanding of the band structure at very extended shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a Rapid Communicatio

    Triply charmed baryons mass decomposition from lattice QCD

    Full text link
    We present the first lattice QCD calculation about the mass decomposition of triply charmed baryons with JPJ^{P} as 32+\frac{3}{2}^{+} and 32−\frac{3}{2}^{-}. The quark mass term ⟨HM⟩\langle H_{M} \rangle contributes about 66\% to the mass of 32+\frac{3}{2}^+ state, which is slightly lower than that of the meson system with the same valence charm quark. Furthermore, based on our results, the total contribution of sea quarks, the gluons and the QCD anomaly accounts for about a quarter of the mass of these two triply charmed baryons. The mass difference of 32+\frac{3}{2}^+ and 32−\frac{3}{2}^- states is mainly from the quark energy ⟨HE⟩\langle H_{E} \rangle of the QCD energy-momentum tensor. For comparison, the mass splitting is also calculated under the framework of the constituent quark model.Comment: 7 page, 14 figure

    Preparation and investigation of self-healing gel for mitigating circulation loss

    Get PDF
    Lost circulation is a common and complex downhole accident in the process of oil and gas drilling. Traditional bridge plugging material has the limitation of poor adaptability to lost formations. Therefore, this study synthesized a new self-healing plugging material to improve the plugging success rate; specifically, the hydrophobic association polymer lauryl methlacrylate-acrylamide-acrylic acid containing Fe3+ was modified via curdlan to form a composite gel with high strength and self-healing properties. The self-healing time, mechanicalness and rheological properties of the self-healing gel were systematically evaluated. The results showed that the modification of curdlan could significantly improve the mechanical properties and rheological strength of self-healing gel, and the chelating structure formed by Fe3+ and carboxyl groups could further enhance the mechanical properties of the self-healing gel. Toughness and storage modulus of the LF0.15C2 selfhealing gel with the introduction of curdlan and Fe3+ could reach 30.2 kJ/m3 and 3,458 Pa, respectively. Compared with conventional gel materials, composite gels with self-healing properties exhibited better pressure-bearing capacity of 2.5 MPa, and could effectively avoid causing plugging at the entrance of the fractures by high-concentration inert material and improve the pressure-bearing capacity. In addition, the plugging mechanism of the self-healing gel modified via curdlan in formation fractures was analysed in detail. The self-healing gel modified via curdlan prepared in this work has application potential as a lost circulation material in the field of oil and gas drilling.Cited as: Wang, R., Wang, C., Long, Y., Sun, J., Liu, L., Wang, J. Preparation and investigation of self-healing gel for mitigating circulation loss. Advances in Geo-Energy Research, 2023, 8(2): 112-125. https://doi.org/10.46690/ager.2023.05.0
    • …
    corecore