71 research outputs found
Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues
T cell activation by intestinal dendritic cells (DC) induces gut-tropism. We show that, reciprocally, DC from peripheral lymph nodes (PLN-DC) induce homing receptors promoting CD8 T cell accumulation in inflamed skin, particularly ligands for P- and E-selectin. Differential imprinting of tissue-tropism was independent of Th1/Th2 cytokines and not restricted to particular DC subsets. Fixed PLN-DC retained the capacity to induce selectin ligands on T cells, which was suppressed by addition of live intestinal DC. By contrast, fixed intestinal DC failed to promote gut-tropism and instead induced skin-homing receptors. Moreover, the induction of selectin ligands driven by antigen-pulsed PLN-DC could be suppressed “in trans” by adding live intestinal DC, but PLN-DC did not suppress gut-homing receptors induced by intestinal DC. Reactivation of tissue-committed memory cells modified their tissue-tropism according to the last activating DC's origin. Thus, CD8 T cells activated by DC acquire selectin ligands by default unless they encounter fixation-sensitive signal(s) for gut-tropism from intestinal DC. Memory T cells remain responsive to these signals, allowing for dynamic migratory reprogramming by skin- and gut-associated DC
Interaction of Dendritic Cells with Skin Endothelium: A New Perspective on Immunosurveillance
The goal of this study was to determine the mechanisms by which dendritic cells (DCs) in blood could interact with endothelium, a prerequisite to extravasation into tissues. Our results indicate that DCs express both HECA-452–reactive and nonreactive isoforms of P-selectin glycoprotein ligand 1 (PSGL-1) and can tether and roll efficiently on E- and P-selectin under flow conditions in vitro. Freshly isolated blood DCs were further observed to roll continuously along noninflamed murine dermal endothelium in vivo. This interaction is strictly dependent on endothelial selectins, as shown by experiments with blocking antibodies and with E- and P-selectin–deficient mice. We hypothesize that DCs in blood are constitutively poised at the interface of blood and skin, ready to extravasate upon induction of inflammation, and we showed that cutaneous inflammation results in a rapid recruitment of DCs from the blood to tissues. We propose that this is an important and previously unappreciated element of immunosurveillance
A Novel Endothelial L-Selectin Ligand Activity in Lymph Node Medulla That Is Regulated by α(1,3)-Fucosyltransferase-IV
Lymphocytes home to peripheral lymph nodes (PLNs) via high endothelial venules (HEVs) in the subcortex and incrementally larger collecting venules in the medulla. HEVs express ligands for L-selectin, which mediates lymphocyte rolling. L-selectin counterreceptors in HEVs are recognized by mAb MECA-79, a surrogate marker for molecularly heterogeneous glycans termed peripheral node addressin. By contrast, we find that medullary venules express L-selectin ligands not recognized by MECA-79. Both L-selectin ligands must be fucosylated by α(1,3)-fucosyltransferase (FucT)-IV or FucT-VII as rolling is absent in FucT-IV+VII−/− mice. Intravital microscopy experiments revealed that MECA-79–reactive ligands depend primarily on FucT-VII, whereas MECA-79–independent medullary L-selectin ligands are regulated by FucT-IV. Expression levels of both enzymes paralleled these anatomical distinctions. The relative mRNA level of FucT-IV was higher in medullary venules than in HEVs, whereas FucT-VII was most prominent in HEVs and weak in medullary venules. Thus, two distinct L-selectin ligands are segmentally confined to contiguous microvascular domains in PLNs. Although MECA-79–reactive species predominate in HEVs, medullary venules express another ligand that is spatially, antigenically, and biosynthetically unique. Physiologic relevance for this novel activity in medullary microvessels is suggested by the finding that L-selectin–dependent T cell homing to PLNs was partly insensitive to MECA-79 inhibition
Longer screen time utilization is associated with the polygenic risk for Attention-deficit/hyperactivity disorder with mediation by brain white matter microstructure
Attention-deficit/hyperactivity disorder (ADHD) has been reported to be associated with longer screen time utilization (STU) at the behavioral level. However, whether there are shared neural links between ADHD symptoms and prolonged STU is not clear and has not been explored in a single large-scale dataset. Leveraging the genetics, neuroimaging and behavioral data of 11,000+ children aged 9-11 from the Adolescent Brain Cognitive Development cohort, this study investigates the associations between the polygenic risk and trait for ADHD, STU, and white matter microstructure through cross-sectionally and longitudinal analyses. Children with higher polygenic risk scores for ADHD tend to have longer STU and more severe ADHD symptoms. Fractional anisotropy (FA) values in several white matter tracts are negatively correlated with both the ADHD polygenic risk score and STU, including the inferior frontal-striatal tract, inferior frontal-occipital fasciculus, superior longitudinal fasciculus and corpus callosum. Most of these tracts are linked to visual-related functions. Longitudinal analyses indicate a directional effect of white matter microstructure on the ADHD scale, and a bi-directional effect between the ADHD scale and STU. Furthermore, reduction of FA in several white matter tracts mediates the association between the ADHD polygenic risk score and STU. These findings shed new light on the shared neural overlaps between ADHD symptoms and prolonged STU, and provide evidence that the polygenic risk for ADHD is related, via white matter microstructure and the ADHD trait, to STU. This study was mainly supported by NSFC and National Key R&D Program of China. [Abstract copyright: Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
The α(1,3)fucosyltransferases FucT-IV and FucT-VII Exert Collaborative Control over Selectin-Dependent Leukocyte Recruitment and Lymphocyte Homing
AbstractE-, P-, and L-selectin counterreceptor activities, leukocyte trafficking, and lymphocyte homing are controlled prominently but incompletely by α(1,3)fucosyltransferase FucT-VII-dependent fucosylation. Molecular determinants for FucT-VII-independent leukocyte trafficking are not defined, and evidence for contributions by or requirements for other FucTs in leukocyte recruitment is contradictory and incomplete. We show here that inflammation-dependent leukocyte recruitment retained in FucT-VII deficiency is extinguished in FucT-IV−/−/FucT-VII−/− mice. Double deficiency yields an extreme leukocytosis characterized by decreased neutrophil turnover and increased neutrophil production. FucT-IV also contributes to HEV-born L-selectin ligands, since lymphocyte homing retained in FucT-VII−/− mice is revoked in FucT-IV−/−/FucT-VII−/− mice. These observations reveal essential FucT-IV-dependent contributions to E-, P-, and L-selectin ligand synthesis and to the control of leukocyte recruitment and lymphocyte homing
Diseño de una planta de procesamiento de productos lácteos y elaboración de un plan de contingencia contra deslaves en el Instituto Tecnológico Universitario Guatemala Sur-USAC. Palón, Escuintla.
La presente investigación se realizó en el Instituto Tecnológico Universitario Guatemala Sur, es una dependencia de la Universidad de San Carlos de Guatemala, descentralizada con patrimonio propio, encargado de desarrollar la formación teórica y práctica y la educación profesional en las áreas tecnológicas. Está ubicado en el municipio de Palín, departamento de Escuintla.
En el Instituto Tecnológico Universitario Guatemala Sur (ITUGS), se imparten 5 carreras técnicas, dentro de las cuales está la carrera de Técnico en Producción Alimentaria donde se imparte el curso de procesamiento de productos lácteos.
La carrera de Técnico necesita el aprendizaje práctico y técnico de la elaboración de alimentos y actualmente el ITUGS no cuenta con las instalaciones adecuadas para desarrollar las prácticas de dicha carrera, por lo que se propone el diseño de una planta de procesamiento de productos lácteos, en donde los alumnos puedan realizar las prácticas de los conocimientos aprendidos en la teoría
Distamycin A Inhibits HMGA1-Binding to the P-Selectin Promoter and Attenuates Lung and Liver Inflammation during Murine Endotoxemia
Background: The architectural transcription factor High Mobility Group-A1 (HMGA1) binds to the minor groove of AT-rich DNA and forms transcription factor complexes (“enhanceosomes”) that upregulate expression of select genes within the inflammatory cascade during critical illness syndromes such as acute lung injury (ALI). AT-rich regions of DNA surround transcription factor binding sites in genes critical for the inflammatory response. Minor groove binding drugs (MGBs), such as Distamycin A (Dist A), interfere with AT-rich region DNA binding in a sequence and conformation-specific manner, and HMGA1 is one of the few transcription factors whose binding is inhibited by MGBs. Objectives: To determine whether MGBs exert beneficial effects during endotoxemia through attenuating tissue inflammation via interfering with HMGA1-DNA binding and modulating expression of adhesion molecules. Methodology/Principal Findings: Administration of Dist A significantly decreased lung and liver inflammation during murine endotoxemia. In intravital microscopy studies, Dist A attenuated neutrophil-endothelial interactions in vivo following an inflammatory stimulus. Endotoxin induction of P-selectin expression in lung and liver tissue and promoter activity in endothelial cells was significantly reduced by Dist A, while E-selectin induction was not significantly affected. Moreover, Dist A disrupted formation of an inducible complex containing NF-κB that binds an AT-rich region of the P-selectin promoter. Transfection studies demonstrated a critical role for HMGA1 in facilitating cytokine and NF-κB induction of P-selectin promoter activity, and Dist A inhibited binding of HMGA1 to this AT-rich region of the P-selectin promoter in vivo. Conclusions/Significance: We describe a novel targeted approach in modulating lung and liver inflammation in vivo during murine endotoxemia through decreasing binding of HMGA1 to a distinct AT-rich region of the P-selectin promoter. These studies highlight the ability of MGBs to function as molecular tools for dissecting transcriptional mechanisms in vivo and suggest alternative treatment approaches for critical illness
Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues
This work was supported by the National Institutes of Health (NIH) grant AI112521 and the John and Virginia Kaneb Fellowship
- …