1,010 research outputs found

    Learning Multi-Level Information for Dialogue Response Selection by Highway Recurrent Transformer

    Get PDF
    With the increasing research interest in dialogue response generation, there is an emerging branch formulating this task as selecting next sentences, where given the partial dialogue contexts, the goal is to determine the most probable next sentence. Following the recent success of the Transformer model, this paper proposes (1) a new variant of attention mechanism based on multi-head attention, called highway attention, and (2) a recurrent model based on transformer and the proposed highway attention, so-called Highway Recurrent Transformer. Experiments on the response selection task in the seventh Dialog System Technology Challenge (DSTC7) show the capability of the proposed model of modeling both utterance-level and dialogue-level information; the effectiveness of each module is further analyzed as well

    An Empirical Study of Content Understanding in Conversational Question Answering

    Full text link
    With a lot of work about context-free question answering systems, there is an emerging trend of conversational question answering models in the natural language processing field. Thanks to the recently collected datasets, including QuAC and CoQA, there has been more work on conversational question answering, and recent work has achieved competitive performance on both datasets. However, to best of our knowledge, two important questions for conversational comprehension research have not been well studied: 1) How well can the benchmark dataset reflect models' content understanding? 2) Do the models well utilize the conversation content when answering questions? To investigate these questions, we design different training settings, testing settings, as well as an attack to verify the models' capability of content understanding on QuAC and CoQA. The experimental results indicate some potential hazards in the benchmark datasets, QuAC and CoQA, for conversational comprehension research. Our analysis also sheds light on both what models may learn and how datasets may bias the models. With deep investigation of the task, it is believed that this work can benefit the future progress of conversation comprehension. The source code is available at https://github.com/MiuLab/CQA-Study.Comment: Published at AAAI 202

    Celecoxib extends C. elegans lifespan via inhibition of insulin‐like signaling but not cyclooxygenase‐2 activity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86911/1/ACEL_688_sm_FigS1-S2-TableS1-S2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/86911/2/j.1474-9726.2011.00688.x.pd
    • 

    corecore