80 research outputs found

    Oscillations in the bispectrum

    Get PDF
    There exist several models of inflation that produce primordial bispectra that contain a large number of oscillations. In this paper we discuss these models, and aim at finding a method of detecting such bispectra in the data. We explain how the recently proposed method of mode expansion of bispectra might be able to reconstruct these spectra from separable basis functions. Extracting these basis functions from the data might then lead to observational constraints on these models.Comment: 6 pages, 2 figures, submitted to JOP: Conference Series, PASCOS 201

    Rapid Tunneling and Percolation in the Landscape

    Full text link
    Motivated by the possibility of a string landscape, we reexamine tunneling of a scalar field across single/multiple barriers. Recent investigations have suggested modifications to the usual picture of false vacuum decay that lead to efficient and rapid tunneling in the landscape when certain conditions are met. This can be due to stringy effects (e.g. tunneling via the DBI action), or by effects arising due to the presence of multiple vacua (e.g. resonance tunneling). In this paper we discuss both DBI tunneling and resonance tunneling. We provide a QFT treatment of resonance tunneling using the Schr\"odinger functional approach. We also show how DBI tunneling for supercritical barriers can naturally lead to conditions suitable for resonance tunneling. We argue using basic ideas from percolation theory that tunneling can be rapid in a landscape where a typical vacuum has multiple decay channels and discuss various cosmological implications. This rapidity vacuum decay can happen even if there are no resonance/DBI tunneling enhancements, solely due to the presence of a large number of decay channels. Finally, we consider various ways of circumventing a recent no-go theorem for resonance tunneling in quantum field theory.Comment: 47 pages, 16 figures. Acknowledgements adde

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    Running Spectral Index from Inflation with Modulations

    Full text link
    We argue that a large negative running spectral index, if confirmed, might suggest that there are abundant structures in the inflaton potential, which result in a fairly large (both positive and negative) running of the spectral index at all scales. It is shown that the center value of the running spectral index suggested by the recent CMB data can be easily explained by an inflaton potential with superimposed periodic oscillations. In contrast to cases with constant running, the perturbation spectrum is enhanced at small scales, due to the repeated modulations. We mention that such features at small scales may be seen by 21 cm observations in the future.Comment: 7 pages, 6 figures, v2: published in JCA

    Multiple Inflation, Cosmic String Networks and the String Landscape

    Full text link
    Motivated by the string landscape we examine scenarios for which inflation is a two-step process, with a comparatively short inflationary epoch near the string scale and a longer period at a much lower energy (like the TeV scale). We quantify the number of ee-foldings of inflation which are required to yield successful inflation within this picture. The constraints are very sensitive to the equation of state during the epoch between the two inflationary periods, as the extra-horizon modes can come back inside the horizon and become reprocessed. We find that the number of ee-foldings during the first inflationary epoch can be as small as 12, but only if the inter-inflationary period is dominated by a network of cosmic strings (such as might be produced if the initial inflationary period is due to the brane-antibrane mechanism). In this case a further 20 ee-foldings of inflation would be required at lower energies to solve the late universe's flatness and horizon problems.Comment: 27 pages, 6 figures; v2: refences adde

    Subleading effects and the field range in axion inflation

    Get PDF
    An attractive candidate for the inflaton is an axion slowly rolling down a flat potential protected by a perturbative shift symmetry. Realisations of this idea within large field, natural and monomial inflation have been disfavoured by observations and are difficult to embed in string theory. We show that subleading, but significant non-perturbative corrections can superimpose sharp cliffs and gentle plateaus into the potential, whose overall effect is to enhance the number of e-folds of inflation. Sufficient e-folds are therefore achieved for smaller field ranges compared to the potential without such corrections. Thus, both single-field natural and monomial inflation in UV complete theories like string theory, can be restored into the favour of current observations, with distinctive signatures. Tensor modes result un-observably small, but there is a large negative running of the spectral index. Remarkably, natural inflation can be achieved with a single field whose axion decay constant is sub-Planckian.Comment: 18 pages, 15 figures; v2 references improve

    Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large Nongaussianity

    Full text link
    Many controlled realizations of chaotic inflation employ pseudo-scalar axions. Pseudo-scalars \phi are naturally coupled to gauge fields through c \phi F \tilde{F}. In the presence of this coupling, gauge field quanta are copiously produced by the rolling inflaton. The produced gauge quanta, in turn, source inflaton fluctuations via inverse decay. These new cosmological perturbations add incoherently with the "vacuum" perturbations, and are highly nongaussian. This provides a natural mechanism to generate large nongaussianity in single or multi field slow-roll inflation. The resulting phenomenological signatures are highly distinctive: large nongaussianity of (nearly) equilateral shape, in addition to detectably large values of both the scalar spectral tilt and tensor-to-scalar ratio (both being typical of large field inflation). The WMAP bound on nongaussianity implies that the coupling, c, of the pseudo-scalar inflaton to any gauge field must be smaller than about 10^{2} M_p^{-1}.Comment: 45 pages, 7 figure

    Non-Gaussianities in N-flation

    Full text link
    We compute non-Gaussianities in N-flation, a string motivated model of assisted inflation with quadratic, separable potentials and masses given by the Marcenko-Pastur distribution. After estimating parameters characterizing the bi- and trispectrum in the horizon crossing approximation, we focus on the non-linearity parameter fNLf_{NL}, a measure of the bispectrum; we compute its magnitude for narrow and broad spreads of masses, including the evolution of modes after horizon crossing. We identify additional contributions due to said evolution and show that they are suppressed as long as the fields are evolving slowly. This renders N\mathcal{N}-flation indistinguishable from simple single-field models in this regime. Larger non-Gaussianities are expected to arise for fields that start to evolve faster, and we suggest an analytic technique to estimate their contribution. However, such fast roll during inflation is not expected in N-flation, leaving (p)re-heating as the main additional candidate for generating non-Gaussianities.Comment: 27 pages, 4 figures, extended references to match version accepted in JCA

    Comparing Brane Inflation to WMAP

    Full text link
    We compare the simplest realistic brane inflationary model to recent cosmological data, including WMAP 3-year cosmic microwave background (CMB) results, Sloan Digital Sky Survey luminous red galaxies (SDSS LRG) power spectrum data and Supernovae Legacy Survey (SNLS) Type 1a supernovae distance measures. Here, the inflaton is simply the position of a D3D3-brane which is moving towards a Dˉ3\bar{D}3-brane sitting at the bottom of a throat (a warped, deformed conifold) in the flux compactified bulk in Type IIB string theory. The analysis includes both the usual slow-roll scenario and the Dirac-Born-Infeld scenario of slow but relativistic rolling. Requiring that the throat is inside the bulk greatly restricts the allowed parameter space. We discuss possible scenarios in which large tensor mode and/or non-Gaussianity may emerge. Here, the properties of a large tensor mode deviate from that in the usual slow-roll scenario, providing a possible stringy signature. Overall, within the brane inflationary scenario, the cosmological data is providing information about the properties of the compactification of the extra dimensions.Comment: 45 pages 11 figure

    The Measure for the Multiverse and the Probability for Inflation

    Full text link
    We investigate the measure problem in the framework of inflationary cosmology. The measure of the history space is constructed and applied to inflation models. Using this measure, it is shown that the probability for the generalized single field slow roll inflation to last for NN e-folds is suppressed by a factor exp⁡(−3N)\exp(-3N), and the probability for the generalized nn-field slow roll inflation is suppressed by a much larger factor exp⁡(−3nN)\exp(-3nN). Some non-inflationary models such as the cyclic model do not suffer from this difficulty.Comment: 16 page
    • 

    corecore