87 research outputs found
Genetic Engineering of Bacteriophages Against Infectious Diseases
Bacteriophages (phages) are the most abundant and widely distributed organisms on Earth, constituting a virtually unlimited resource to explore the development of biomedical therapies. The therapeutic use of phages to treat bacterial infections (âphage therapyâ) was conceived by Felix dâHerelle nearly a century ago. However, its power has been realized only recently, largely due to the emergence of multi-antibiotic resistant bacterial pathogens. Progress in technologies, such as high-throughput sequencing, genome editing, and synthetic biology, further opened doors to explore this vast treasure trove. Here, we review some of the emerging themes on the use of phages against infectious diseases. In addition to phage therapy, phages have also been developed as vaccine platforms to deliver antigens as part of virus-like nanoparticles that can stimulate immune responses and prevent pathogen infections. Phage engineering promises to generate phage variants with unique properties for prophylactic and therapeutic applications. These approaches have created momentum to accelerate basic as well as translational phage research and potential development of therapeutics in the near future
Comprehensive prognostic modeling of locoregional recurrence after radiotherapy for patients with locoregionally advanced hypopharyngeal squamous cell carcinoma
Purpose: To propose and evaluate a comprehensive modeling approach combing radiomics, dosiomics and clinical components, for more accurate prediction of locoregional recurrence risk after radiotherapy for patients with locoregionally advanced HPSCC.
//
Materials and methods: Clinical data of 77 HPSCC patients were retrospectively investigated, whose median follow-up duration was 23.27 (4.83-81.40) months. From the planning CT and dose distribution, 1321 radiomics and dosiomics features were extracted respectively from planning gross tumor volume (PGTV) region each patient. After stability test, feature dimension was further reduced by Principal Component Analysis (PCA), yielding Radiomic and Dosiomic Principal Components (RPCs and DPCs) respectively. Multiple Cox regression models were constructed using various combinations of RPC, DPC and clinical variables as the predictors. Akaike information criterion (AIC) and C-index were used to evaluate the performance of Cox regression models.
//
Results: PCA was performed on 338 radiomic and 873 dosiomic features that were tested as stable (ICC1 > 0.7 and ICC2 > 0.95), yielding 5 RPCs and DPCs respectively. Three comprehensive features (RPC0, P<0.01, DPC0, P<0.01 and DPC3, P<0.05) were found to be significant in the individual Radiomic or Dosiomic Cox regression models. The model combining the above features and clinical variable (total stage IVB) provided best risk stratification of locoregional recurrence (C-index, 0.815; 95%CI, 0.770-0.859) and prevailing balance between predictive accuracy and complexity (AIC, 143.65) than any other investigated models using either single factors or two combined components.
//
Conclusion: This study provided quantitative tools and additional evidence for the personalized treatment selection and protocol optimization for HPSCC, a relatively rare cancer. By combining complementary information from radiomics, dosiomics, and clinical variables, the proposed comprehensive model provided more accurate prediction of locoregional recurrence risk after radiotherapy
The Electromechanical Behavior of a Micro-Ring Driven by Traveling Electrostatic Force
There is no literature mentioning the electromechanical behavior of micro structures driven by traveling electrostatic forces. This article is thus the first to present the dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The traveling electrostatic force may be induced by sequentially actuated electrodes which are arranged around the flexible micro-ring. The analysis is based on a linearized distributed model considering the electromechanical coupling effects between electrostatic force and structure. The micro-ring will resonate when the traveling speeds of the electrostatic force approach some critical speeds. The critical speeds are equal to the ratio of the natural frequencies to the wave number of the correlative natural mode of the ring. Apart from resonance, the ring may be unstable at some unstable traveling speeds. The unstable regions appear not only near the critical speeds, but also near some fractions of some critical speeds differences. Furthermore the unstable regions expand with increasing driving voltage. This article may lead to a new research branch on electrostatic-driven micro devices
SdPI, The First Functionally Characterized Kunitz-Type Trypsin Inhibitor from Scorpion Venom
Background: Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized. Principal Findings: A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (Ki = 1.6610 27 M) and thermostability. Conclusions: The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitztype venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derive
On-surface crystallization behaviors of H-bond donorâacceptor complexes at liquid/solid interfaces
Two-dimensional (2D) crystallization behaviors of A-TPCn (n = 4, 6, 10), T3C4, and hydrogen-bonded complexes T3C4@TPCn (n = 4, 6, 10) are investigated by means of scanning tunneling microscope (STM) observations and density functional theory (DFT) calculations. The STM observations reveal that A-TPC4, A-TPC10, and T3C4 self-organize into dumbbell-shaped structures, well-ordered bright arrays, and zigzag structures, respectively. Interestingly, T3C4@TPC10 fails to form the cage-ball structure, whereas T3C4@TPC4 and T3C4@TPC6 co-assemble into cage-ball structures with the same lattice parameters. The filling rates of the balls of these two kinds of cage-ball structures depend heavily on the deposition sequence. As a result, the filling rates of the cages in T3C4/A-TPCn (n = 4, 6) with deposition of T3C4 anterior to A-TPCn are higher than those in A-TPCn/T3C4 (n = 4, 6) with the opposite deposition sequence. Furthermore, lattice defects formed by T3C4 coexist with the cage-ball structures. Moreover, the similar energy per unit area of lattice defects (â0.101 kcal molâ1 Ă
â2) and the two cage-ball networks (â0.194 and â0.208 kcal molâ1 Ă
â2, respectively), illustrating the similar stabilities of lattice defects and cage-ball networks, demonstrates the rationality of lattice defects. Combining STM investigations and DFT calculations, this work could provide a useful approach to investigate the 2D crystallization mechanisms of supramolecular liquid crystals on surfaces.This work was supported by the National Basic Research Program of China (No. 2016YFA0200700), the National Natural Science Foundation of China (Nos. 21472029, 11001257, and 21773041), the MINECO-FEDER funds (project MAT2015-66208-C3-1-P), and the Gobierno de Aragon-FSE (E47_17R and B.F grant).Peer reviewe
Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite
As China's first X-ray astronomical satellite, the Hard X-ray Modulation
Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15,
2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy
satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was
designed to perform pointing, scanning and gamma-ray burst (GRB) observations
and, based on the Direct Demodulation Method (DDM), the image of the scanned
sky region can be reconstructed. Here we give an overview of the mission and
its progresses, including payload, core sciences, ground calibration/facility,
ground segment, data archive, software, in-orbit performance, calibration,
background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech.
Astron. arXiv admin note: text overlap with arXiv:1910.0443
- âŠ