41,798 research outputs found

    On the theory of the CO+OH reaction, including H and C kinetic isotope effects

    Get PDF
    The effect of pressure, temperature, H/D isotopes, and C isotopes on the kinetics of the OH+CO reaction are investigated using Rice-Ramsperger-Kassel-Marcus theory. Pressure effects are treated with a step-ladder plus steady-state model and tunneling effects are included. New features include a treatment of the C isotope effect and a proposed nonstatistical effect in the reaction. The latter was prompted by existing kinetic results and molecular-beam data of Simons and co-workers [J. Phys. Chem. A 102, 9559 (1998); J. Chem. Phys. 112, 4557 (2000); 113, 3173 (2000)] on incomplete intramolecular energy transfer to the highest vibrational frequency mode in HOCO*. In treating the many kinetic properties two small customary vertical adjustments of the barriers of the two transition states were made. The resulting calculations show reasonable agreement with the experimental data on (1) the pressure and temperature dependence of the H/D effect, (2) the pressure-dependent 12C/13C isotope effect, (3) the strong non-Arrhenius behavior observed at low temperatures, (4) the high-temperature data, and (5) the pressure dependence of rate constants in various bath gases. The kinetic carbon isotopic effect is usually less than 10 per mil. A striking consequence of the nonstatistical assumption is the removal of a major discrepancy in a plot of the kOH+CO/kOD+CO ratio versus pressure. A prediction is made for the temperature dependence of the OD+CO reaction in the low-pressure limit at low temperatures

    On the theory of the reaction rate of vibrationally excited CO molecules with OH radicals

    Get PDF
    The dependence of the rate of the reaction CO+OH-->H+CO2 on the CO-vibrational excitation is treated here theoretically. Both the Rice-Ramsperger-Kassel-Marcus (RRKM) rate constant kRRKM and a nonstatistical modification knon [W.-C. Chen and R. A. Marcus, J. Chem. Phys. 123, 094307 (2005).] are used in the analysis. The experimentally measured rate constant shows an apparent (large error bars) decrease with increasing CO-vibrational temperature Tv over the range of Tv's studied, 298–1800 K. Both kRRKM(Tv) and knon(Tv) show the same trend over the Tv-range studied, but the knon(Tv) vs Tv plot shows a larger effect. The various trends can be understood in simple terms. The calculated rate constant kv decreases with increasing CO vibrational quantum number v, on going from v=0 to v=1, by factors of 1.5 and 3 in the RRKM and nonstatistical calculations, respectively. It then increases when v is increased further. These results can be regarded as a prediction when v state-selected rate constants become available

    Isotopomer Fractionation in the UV Photolysis of N_2O: 3. 3D Ab Initio Surfaces and Anharmonic Effects

    Get PDF
    The wavelength-dependent isotopic fractionation of N_2O is calculated, extending our previous work, Parts 1 and 2, in several aspects: (1) the fully three-dimensional ab initio electronic potential and transition dipole moment surfaces of S. Nanbu and M. S. Johnson (J. Chem. Phys. A 2004, 108, 8905) are used to calculate the absorption cross sections, instead of a 2D surface and (2) the vibrational frequencies and wave functions with anharmonicity correction are used for the ground electronic state. The results for the absorption spectrum and for the isotopic fractionation of the different isotopomers are discussed. One difference between experiments measuring the absorption coefficient (von Hessberg et al. Atmos. Chem. Phys. 2004, 4, 1237) and the others that measure instead the photodissociation is also discussed. Experiments on the quantum yield for wavelengths longer than 200 nm (>50000 cm^(−1)) would be helpful in treating the observed difference

    A theoretical study of ozone isotopic effects using a modified ab initio potential energy surface

    Get PDF
    A modified ab initio potential energy surface (PES) is used for calculations of ozone recombination and isotopic exchange rate constants. The calculated low-pressure isotopic effects on the ozone formation reaction are consistent with the experimental results and with the theoretical results obtained earlier [J. Chem. Phys. 116, 137 (2002)]. They are thereby relatively insensitive to the properties of these PES. The topics discussed include the dependence of the calculated low-pressure recombination rate constant on the hindered-rotor PES, the role of the asymmetry of the potential for a general X + YZ reaction (Y[not-equal]Z), and the partitioning to form each of the two recombination products: XYZ and XZY

    Probing spin entanglement by gate-voltage-controlled interference of current correlation in quantum spin Hall insulators

    Full text link
    We propose an entanglement detector composed of two quantum spin Hall insulators and a side gate deposited on one of the edge channels. For an ac gate voltage, the differential noise contributed from the entangled electron pairs exhibits the nontrivial step structures, from which the spin entanglement concurrence can be easily obtained. The possible spin dephasing effects in the quantum spin Hall insulators are also included.Comment: Physics Letters A in pres

    Towards Energy Neutrality in Energy Harvesting Wireless Sensor Networks: A Case for Distributed Compressive Sensing?

    Full text link
    This paper advocates the use of the emerging distributed compressive sensing (DCS) paradigm in order to deploy energy harvesting (EH) wireless sensor networks (WSN) with practical network lifetime and data gathering rates that are substantially higher than the state-of-the-art. In particular, we argue that there are two fundamental mechanisms in an EH WSN: i) the energy diversity associated with the EH process that entails that the harvested energy can vary from sensor node to sensor node, and ii) the sensing diversity associated with the DCS process that entails that the energy consumption can also vary across the sensor nodes without compromising data recovery. We also argue that such mechanisms offer the means to match closely the energy demand to the energy supply in order to unlock the possibility for energy-neutral WSNs that leverage EH capability. A number of analytic and simulation results are presented in order to illustrate the potential of the approach.Comment: 6 pages. This work will be presented at the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, US, December 201

    Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation

    Full text link
    We study the geometric measure of entanglement (GM) of pure symmetric states related to rank-one positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases (MUBs), and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC~POVMs) and use it to characterize all inequivalent SIC~POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg--Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanent of the related Gram matrix.Comment: 11 pages, 1 figure, published versio
    corecore