181,139 research outputs found
Monomial Testing and Applications
In this paper, we devise two algorithms for the problem of testing
-monomials of degree in any multivariate polynomial represented by a
circuit, regardless of the primality of . One is an time
randomized algorithm. The other is an time deterministic
algorithm for the same -monomial testing problem but requiring the
polynomials to be represented by tree-like circuits. Several applications of
-monomial testing are also given, including a deterministic
upper bound for the -set -packing problem.Comment: 17 pages, 4 figures, submitted FAW-AAIM 2013. arXiv admin note:
substantial text overlap with arXiv:1302.5898; and text overlap with
arXiv:1007.2675, arXiv:1007.2678, arXiv:1007.2673 by other author
Steady-state phase error for a phase-locked loop subjected to periodic Doppler inputs
The performance of a carrier phase locked loop (PLL) driven by a periodic Doppler input is studied. By expanding the Doppler input into a Fourier series and applying the linearized PLL approximations, it is easy to show that, for periodic frequency disturbances, the resulting steady state phase error is also periodic. Compared to the method of expanding frequency excursion into a power series, the Fourier expansion method can be used to predict the maximum phase error excursion for a periodic Doppler input. For systems with a large Doppler rate fluctuation, such as an optical transponder aboard an Earth orbiting spacecraft, the method can be applied to test whether a lower order tracking loop can provide satisfactory tracking and thereby save the effect of a higher order loop design
Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse
Using multi-dimensional particle-in-cell (PIC) simulations we study ion
acceleration from a foil irradiated by a circularly polarized laser pulse at
1022W/cm^2 intensity. When the foil is shaped initially in the transverse
direction to match the laser intensity profile, the center part of the target
can be uniformly accelerated for a longer time compared to a usual flat target.
Target deformation and undesirable plasma heating are effectively suppressed.
The final energy spectrum of the accelerated ion beam is improved dramatically.
Collimated GeV quasi-mono-energetic ion beams carrying as much as 18% of the
laser energy are observed in multi-dimensional simulations. Radiation damping
effects are also checked in the simulations.Comment: 4 pages, 4 figure
Effect of C giant resonance on the photoabsorption of encaged atoms
The absolute differential oscillator strengths (DOS's) for the
photoabsorption of the Ne, Ar, and Xe atoms encapsulated in the C have
been evaluated using the time-dependent-density-functional-theory, which solves
the quantum Liouvillian equation with the Lanczos chain method. The
calculations are performed in the energy regions both inside and outside the
C giant resonance. The photoabsorption spectra of the atoms encaged in
the C demonstrate strong oscillations inside the energy range of the
C giant resonance. This type of oscillation cannot be explained by the
confinement resonance, but is due to the energy transfer from the C
valence electrons to the photoelectron through the intershell coupling
Study of the Wealth Inequality in the Minority Game
To demonstrate the usefulness of physical approaches for the study of
realistic economic systems, we investigate the inequality of players' wealth in
one of the most extensively studied econophysical models, namely, the minority
game (MG). We gauge the wealth inequality of players in the MG by a well-known
measure in economics known as the modified Gini index. From our numerical
results, we conclude that the wealth inequality in the MG is very severe near
the point of maximum cooperation among players, where the diversity of the
strategy space is approximately equal to the number of strategies at play. In
other words, the optimal cooperation between players comes hand in hand with
severe wealth inequality. We also show that our numerical results in the
asymmetric phase of the MG can be reproduced semi-analytically using a replica
method.Comment: 9 pages in revtex 4 style with 3 figures; minor revision with a
change of title; to appear in PR
- …