2,185 research outputs found
Possible Interpretations of If It Really Exists
We analyze various possible interpretations of the narrow state
observed by SELEX Collaboration recently, which lies above
threshold and has abnormal decay pattern. These interpretations include: (1)
several versions of tetraquarks; (2) conventional meson such as the
first radial excitation of with abnormally large SU(3) symmetry
breaking; (3) conventional meson with abnormally large
coupling; (4) heavy hybrid meson. We discuss the physical implications of each
interpretation. For example, if the existence of is confirmed
as the first radial excitation of by other experiments, it will be
helpful to look for (1) its SU(3) flavor partners ; (2) its
B-meson analogues ; (3) S-wave two pion
decay modes
Non-Equilibrium Statistical Physics of Currents in Queuing Networks
We consider a stable open queuing network as a steady non-equilibrium system
of interacting particles. The network is completely specified by its underlying
graphical structure, type of interaction at each node, and the Markovian
transition rates between nodes. For such systems, we ask the question ``What is
the most likely way for large currents to accumulate over time in a network
?'', where time is large compared to the system correlation time scale. We
identify two interesting regimes. In the first regime, in which the
accumulation of currents over time exceeds the expected value by a small to
moderate amount (moderate large deviation), we find that the large-deviation
distribution of currents is universal (independent of the interaction details),
and there is no long-time and averaged over time accumulation of particles
(condensation) at any nodes. In the second regime, in which the accumulation of
currents over time exceeds the expected value by a large amount (severe large
deviation), we find that the large-deviation current distribution is sensitive
to interaction details, and there is a long-time accumulation of particles
(condensation) at some nodes. The transition between the two regimes can be
described as a dynamical second order phase transition. We illustrate these
ideas using the simple, yet non-trivial, example of a single node with
feedback.Comment: 26 pages, 5 figure
Brown carbon in tar balls from smoldering biomass combustion
We report the direct observation of laboratory production of spherical, carbonaceous particles- tar balls -from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent imaginary part of its refractive index-optically defined as brown carbon -is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV) spectral region. Sensitivity calculations for aerosols containing traditional OC (no absorption at visible and UV wavelengths) and brown carbon suggest that accounting for near-UV absorption by brown carbon leads to an increase in aerosol radiative forcing efficiency and increased light absorption. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth\u27s radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere
Study of decays
We investigate the production of the novel -wave mesons and
, identified as and , in heavy
meson decays, respectively. With the heavy quark limit, we give our modelling
wave functions for the scalar meson . Based on the assumptions of
color transparency and factorization theorem, we estimate the branching ratios
of decays in terms of the obtained wave functions. Some
remarks on productions are also presented.Comment: 16 pages, 2 figures, Revtex4, to be published in Phys. Rev.
Neutron scattering and molecular correlations in a supercooled liquid
We show that the intermediate scattering function for neutron
scattering (ns) can be expanded naturely with respect to a set of molecular
correlation functions that give a complete description of the translational and
orientational two-point correlations in the liquid. The general properties of
this expansion are discussed with special focus on the -dependence and hints
for a (partial) determination of the molecular correlation functions from
neutron scattering results are given. The resulting representation of the
static structure factor is studied in detail for a model system using
data from a molecular dynamics simulation of a supercooled liquid of rigid
diatomic molecules. The comparison between the exact result for and
different approximations that result from a truncation of the series
representation demonstrates its good convergence for the given model system. On
the other hand it shows explicitly that the coupling between translational
(TDOF) and orientational degrees of freedom (ODOF) of each molecule and
rotational motion of different molecules can not be neglected in the
supercooled regime.Further we report the existence of a prepeak in the
ns-static structure factor of the examined fragile glassformer, demonstrating
that prepeaks can occur even in the most simple molecular liquids. Besides
examining the dependence of the prepeak on the scattering length and the
temperature we use the expansion of into molecular correlation
functions to point out intermediate range orientational order as its principle
origin.Comment: 13 pages, 7 figure
Muon anomalous magnetic moment in the standard model with two Higgs doublets
The muon anomalous magnetic moment is investigated in the standard model with
two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all
the effective Yukawa couplings become complex. As a consequence of the non-zero
phase in the couplings, the one loop contribution from the neutral scalar
bosons could be positive and negative relying on the CP phases. The
interference between one and two loop diagrams can be constructive in a large
parameter space of CP-phases. This will result in a significant contribution to
muon anomalous magnetic moment even in the flavor conserving process with a
heavy neutral scalar boson ( 200 GeV) once the effective muon Yukawa
coupling is large (). In general, the one loop contributions
from lepton flavor changing scalar interactions become more important. In
particular, when all contributions are positive in a reasonable parameter space
of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation
can be easily explained even for a heavy scalar boson with a relative small
Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54
(2001) 11501
Classical Evolution of Quantum Elliptic States
The hydrogen atom in weak external fields is a very accurate model for the
multiphoton excitation of ultrastable high angular momentum Rydberg states, a
process which classical mechanics describes with astonishing precision. In this
paper we show that the simplest treatment of the intramanifold dynamics of a
hydrogenic electron in external fields is based on the elliptic states of the
hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical
symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields the {\it exact} evolution in time of these quantum
states, and so we explain the surprising match between purely classical
perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are
ultrastable hydrogenic eigenstates which have maximum total angular momentum
and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.
Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of the inter-particle interactions
We study the magnetic properties of spherical Co clusters with diameters
between 0.8 nm and 5.4 nm (25 to 7500$ atoms) prepared by sequential sputtering
of Co and Al2O3. The particle size distribution has been determined from the
equilibrium susceptibility and magnetization data and it is compared to
previous structural characterizations. The distribution of activation energies
was independently obtained from a scaling plot of the ac susceptibility.
Combining these two distributions we have accurately determined the effective
anisotropy constant Keff. We find that Keff is enhanced with respect to the
bulk value and that it is dominated by a strong anisotropy induced at the
surface of the clusters. Interactions between the magnetic moments of adjacent
layers are shown to increase the effective activation energy barrier for the
reversal of the magnetic moments. Finally, this reversal is shown to proceed
classically down to the lowest temperature investigated (1.8 K).Comment: 13 figures submitted to Phys. Rev.
Integrable Spin Chains on the Conformal Moose
We consider N=1, D=4 superconformal U(N)^{pq} Yang-Mills theories dual to
AdS_5xS^5/Z_pxZ_q orbifolds. We construct the dilatation operator of this
superconformal gauge theory at one-loop planar level. We demonstrate that a
specific sector of this dilatation operator can be thought of as the transfer
matrix for a two-dimensional statistical mechanical system, related to an
integrable SU(3) anti-ferromagnetic spin chain system, which in turn is
equivalent to a 2+1-dimensional string theory where the spatial slices are
discretized on a triangular lattice. This is an extension of the SO(6) spin
chain picture of N=4 super Yang-Mills theory. We comment on the integrability
of this N=1 gauge theory and hence the corresponding three-dimensional
statistical mechanical system, its connection to three-dimensional lattice
gauge theories, extensions to six-dimensional string theories, AdS/CFT type
dualities and finally their construction via orbifolds and brane-box models. In
the process we discover a new class of almost-BPS BMN type operators with large
engineering dimensions but controllably small anomalous corrections.Comment: 53 pages, 14 eps figures; Added reference
Distributed phase-covariant cloning with atomic ensembles via quantum Zeno dynamics
We propose an interesting scheme for distributed orbital state quantum
cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic
ensembles which consist of identical three-level atoms are trapped in distant
cavities connected by a single-mode integrated optical star coupler. These
qubits can be manipulated through appropriate modulation of the coupling
constants between atomic ensemble and classical field, and the cavity decay can
be largely suppressed as the number of atoms in the ensemble qubits increases.
The fidelity of each cloned qubit can be obtained with analytic result. The
present scheme provides a new way to construct the quantum communication
network.Comment: 5 pages, 4 figure
- …