3,821 research outputs found
Compositional modulation in AlxGa1âxAs epilayers grown by molecular beam epitaxy on the (111) facets of grooves in a nonplanar substrate
We report the first observation of a lateral junction formed in an alloy due to an abrupt transition from segregated to random AlGaAs alloy compositions. Al0.25Ga0.75As epilayers were grown by molecular beam epitaxy on [011-bar] oriented grooves in a nonplanar (100) GaAs substrate. A quasi-periodic modulation of the aluminum concentration occurs spontaneously in material grown on the (111) facets of the groove, with a period of 50â70 Ă
along the [111] direction. The compositional modulation is associated with a reduction of the band gap by 130 meV, with respect to the random alloy. While segregation of the AlGaAs alloy has been seen previously, this is the first observation of segregation of AlGaAs grown on a (111) surface. The compositional modulation terminates abruptly at the boundaries of the (111) facet, forming abrupt lateral junctions in the AlGaAs layers grown on a groove
Cathodoluminescence measurement of an orientation dependent aluminum concentration in AlxGa1âxAs epilayers grown by molecular beam epitaxy on a nonplanar substrate
Cathodoluminescence scanning electron microscopy is used to study AlxGa1âx As epilayers grown on a nonplanar substrate by molecular beam epitaxy. Grooves parallel to the [011-bar] direction were etched in an undoped GaAs substrate. Growth on such grooves proceeds on particular facet planes. We find that the aluminum concentration in the epilayers is dependent on the facet orientation, changing by as much as 35% from the value in the unpatterned areas. The transition in the aluminum concentration at a boundary between two facets is observed to be very abrupt
Millimeter-wave diode-grid phase shifters
Monolithic diode grids have been fabricated on 2-cm square gallium-arsenide wafers with 1600 Schottky-barrier varactor diodes. Shorted diodes are detected with a liquid-crystal technique, and the bad diodes are removed with an ultrasonic probe. A small-aperture reflectometer that uses wavefront division interference was developed to measure the reflection coefficient of the grids. A Phase shift of 70° with a 7-dB loss was obtained at 93 GHz when the bias on the diode grid was changed from -3 V to 1 V. A simple transmission-line grid model, together with the measured low-frequency parameters for the diodes, was shown to predict the measured performance over the entire capacitive bias range of the diodes, as well as over the complete reactive tuning range provided by a reflector behind the grid, and over a wide range of frequencies form 33 GHz to 141 GHz. This shows that the transmission-line model and the measured low-frequency diode parameters can be used to design an electronic beam-steering array and to predict its performance. An electronic beam-steering array made of a pair of grids using state-of-the-art diodes with 5-Ω series resistances would have a loss of 1.4 dB at 90 GHz
Millimeter-Wave Diode-Grid Frequency Doubler
Monolithic diode grid were fabricated on 2-cm^2 gallium-arsenide wafers in a proof-of-principle test of a quasi-optical varactor millimeter-wave frequency multiplier array concept. An equivalent circuit model based on a transmission-line analysis of plane wave illumination was applied to predict the array performance. The doubler experiments were performed under far-field illumination conditions. A second-harmonic conversion efficiency of 9.5% and output powers of 0.5 W were achieved at 66 GHz when the diode grid was pumped with a pulsed source at 33 GHz. This grid had 760 Schottky-barrier varactor diodes. The average series resistance was 27 Ω, the minimum capacitance was 18 fF at a reverse breakdown voltage of -3 V. The measurements indicate that the diode grid is a feasible device for generating watt-level powers at millimeter frequencies and that substantial improvement is possible by improving the diode breakdown voltage
Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection
It is generally believed that the magnetic free energy accumulated in the
corona serves as a main energy source for solar explosions such as coronal mass
ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs,
the energy may be abruptly released either by an ideal magnetohydrodynamic
(MHD) catastrophe, which belongs to a global magnetic topological instability
of the system, or by a fast magnetic reconnection across preexisting or
rapidly-developing electric current sheets. Both ways of magnetic energy
release are thought to be important to CME dynamics. To disentangle their
contributions, we construct a flux rope catastrophe model in the corona and
solar wind and compare different cases in which we either prohibit or allow
magnetic reconnection to take place across rapidly-growing current sheets
during the eruption. It is demonstrated that CMEs, even fast ones, can be
produced taking the ideal MHD catastrophe as the only process of magnetic
energy release. Nevertheless, the eruptive speed can be significantly enhanced
after magnetic reconnection sets in. In addition, a smooth transition from slow
to fast eruptions is observed when increasing the strength of the background
magnetic field, simply because in a stronger field there is more free magnetic
energy at the catastrophic point available to be released during an eruption.
This suggests that fast and slow CMEs may have an identical driving mechanism.Comment: 7 pages, 4 figures, ApJ, in press (vol. 666, Sept. 2007
One-loop SYM-supergravity relation for five-point amplitudes
We derive a linear relation between the one-loop five-point amplitude of N=8
supergravity and the one-loop five-point subleading-color amplitudes of N=4
supersymmetric Yang-Mills theory.Comment: 17 pages, 2 figures; v2: very minor correction
Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere
A method for the full three-dimensional (3-D) reconstruction of the
trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations
Observatory (STEREO) data is presented. Four CMEs that were simultaneously
observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and
Behind STEREO satellites were analysed. These observations were used to derive
CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data
support a radial propagation model. Assuming pseudo-radial propagation at large
distances from the Sun (15-240Rsun), the CME positions were extrapolated into
the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in
the different fields-of-view. It was found that CMEs slower than the solar wind
were accelerated, while CMEs faster than the solar wind were decelerated, with
both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi
Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost
BACKGROUND: The health impacts of ambient air pollution impose large costs on society. Although all people are exposed to air pollution, the older population (ie, those aged â„60 years) tends to be disproportionally affected. As a result, there is growing concern about the health impacts of air pollution as many countries undergo rapid population ageing. We investigated the spatial and temporal variation in the economic cost of deaths attributable to ambient air pollution and its interaction with population ageing from 2000 to 2016 at global and regional levels. METHODS: In this global analysis, we developed an age-adjusted measure of the value of a statistical life-year (VSLY) to estimate the economic cost of deaths attributable to ambient PM2·5 pollution using Global Burden of Diseases, Injuries, and Risk Factors Study 2017 data and country-level socioeconomic information. First, we estimated the global age-specific and cause-specific mortality and years of life lost (YLLs) attributable to PM2·5 pollution using the global exposure mortality model and global estimates of exposure at 0·1°âĂâ0·1° (about 11 kmâĂâ11 km at the equator) resolution. Second, for each year between 2000 and 2016, we translated the YLLs within each age group into a health-related cost using a country-specific, age-adjusted measure of VSLY. Third, we decomposed the major driving factors that contributed to the temporal change in health costs related to PM2·5. Finally, we did a sensitivity test to analyse the variability of the estimated health costs to four alternative valuation measures. We identified the uncertainty intervals (UIs) from 1000 draws of the parameters and concentrationâresponse functions by age, cause, country, and year. All economic values are reported in 2011 purchasing power parity-adjusted US dollars. All simulations were done with R, version 3.6.0. FINDINGS: Globally, in 2016, PM2·5 was estimated to have caused 8·42 million (95% UI 6·50â10·52) attributable deaths, which was associated with 163·68 million (116·03â219·44) YLLs. In 2016, the global economic cost of deaths attributable to ambient PM_{2·5} pollution for the older population was US4·09 trillion [3·19â5·05]). The economic cost per capita for the older population was $2739 (2160â3345) in 2016, which was 10 times that of the younger population (ie, those aged <60 years). By assessing the factors that contributed to economic costs, we found that increases in these factors changed the total economic cost by 77% for gross domestic product (GDP) per capita, 21% for population ageing, 16% for population growth, â41% for age-specific mortality, and â0·4% for PM_{2·5} exposure. INTERPRETATION: The economic cost of ambient PM_{2·5} borne by the older population almost doubled between 2000 and 2016, driven primarily by GDP growth, population ageing, and population growth. Compared with younger people, air pollution leads to disproportionately higher health costs among older people, even after accounting for their relatively shorter life expectancy and increased disability. As the world's population is ageing, the disproportionate health cost attributable to ambient PM2·5 pollution potentially widens the health inequities for older people. Countries with severe air pollution and rapid ageing rates need to take immediate actions to improve air quality. In addition, strategies aimed at enhancing health-care services, especially targeting the older population, could be beneficial for reducing the health costs of ambient air pollution. FUNDING: National Natural Science Foundation of China, China Postdoctoral Science Foundation, and Qiushi Foundation
Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE
Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission
Stochastic Invariants for Probabilistic Termination
Termination is one of the basic liveness properties, and we study the
termination problem for probabilistic programs with real-valued variables.
Previous works focused on the qualitative problem that asks whether an input
program terminates with probability~1 (almost-sure termination). A powerful
approach for this qualitative problem is the notion of ranking supermartingales
with respect to a given set of invariants. The quantitative problem
(probabilistic termination) asks for bounds on the termination probability. A
fundamental and conceptual drawback of the existing approaches to address
probabilistic termination is that even though the supermartingales consider the
probabilistic behavior of the programs, the invariants are obtained completely
ignoring the probabilistic aspect.
In this work we address the probabilistic termination problem for
linear-arithmetic probabilistic programs with nondeterminism. We define the
notion of {\em stochastic invariants}, which are constraints along with a
probability bound that the constraints hold. We introduce a concept of {\em
repulsing supermartingales}. First, we show that repulsing supermartingales can
be used to obtain bounds on the probability of the stochastic invariants.
Second, we show the effectiveness of repulsing supermartingales in the
following three ways: (1)~With a combination of ranking and repulsing
supermartingales we can compute lower bounds on the probability of termination;
(2)~repulsing supermartingales provide witnesses for refutation of almost-sure
termination; and (3)~with a combination of ranking and repulsing
supermartingales we can establish persistence properties of probabilistic
programs.
We also present results on related computational problems and an experimental
evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page
- âŠ