2,578 research outputs found
Brownian motion of a charged test particle near a reflecting boundary at finite temperature
We discuss the random motion of charged test particles driven by quantum
electromagnetic fluctuations at finite temperature in both the unbounded flat
space and flat spacetime with a reflecting boundary and calculate the mean
squared fluctuations in the velocity and position of the test particle. We show
that typically the random motion driven by the quantum fluctuations is one
order of magnitude less significant than that driven by thermal noise in the
unbounded flat space. However, in the flat space with a reflecting plane
boundary, the random motion of quantum origin can become much more significant
than that of thermal origin at very low temperature.Comment: 11 pages,no figures, Revtex
Nonuniversal finite-size scaling in anisotropic systems
We study the bulk and finite-size critical behavior of the O symmetric
theory with spatially anisotropic interactions of non-cubic symmetry
in dimensions. In such systems of a given universality class,
two-scale factor universality is absent in bulk correlation functions, and
finite-size scaling functions including the Privman-Fisher scaling form of the
free energy, the Binder cumulant ratio and the Casimir amplitude are shown to
be nonuniversal. In particular it is shown that, for anisotropic confined
systems, isotropy cannot be restored by an anisotropic scale transformation.Comment: 8 pages, 1 figure, accepted for publication in Phys. Rev. E and
modifications of tex
Faraday instability on viscous ferrofluids in a horizontal magnetic field: Oblique rolls of arbitrary orientation
A linear stability analysis of the free surface of a horizontally unbounded
ferrofluid layer of arbitrary depth subjected to vertical vibrations and a
horizontal magnetic field is performed. A nonmonotonic dependence of the
stability threshold on the magnetic field is found at high frequencies of the
vibrations. The reasons of the decrease of the critical acceleration amplitude
caused by a horizontal magnetic field are discussed. It is revealed that the
magnetic field can be used to select the first unstable pattern of Faraday
waves. In particular, a rhombic pattern as a superposition of two different
oblique rolls can occur. A scaling law is presented which maps all data into
one graph for the tested range of viscosities, frequencies, magnetic fields and
layer thicknesses.Comment: 8 pages, 6 figures, RevTex
Factors affecting In vitro methane production from cecum contents of White Roman geese
The goal of this research was to gain understanding of in vitro methane (CH4) production from the cecal contents of White Roman geese under various incubation conditions. Five experiments were conducted to ascertain the effects of i) incubation time, ii) pH, iii) the addition of formic acid to the culture media, iv) temperature, and v) the addition of salt to the nutritive liquid. Methane production increased significantly with the supplementation of formic acid in the culture fluid (Experiment III). Additionally, CH4 production Experiment V was higher than that without saline. In contrast, low CH4 production occurred under acidic conditions (pH ≦5.4) and at temperatures higher or lower than typical bird body temperature (43 °C) without formic acid and saline solution in the culture media. Since bird body temperature cannot be controlled easily, approaches such as maintaining cecum fluid at low pH and preventing the formation of formic acid by adjusting the recipes of feeds could be considered for controlling in vivo CH4 production from the intestinal tract digesta of geese
Parametrically Excited Surface Waves: Two-Frequency Forcing, Normal Form Symmetries, and Pattern Selection
Motivated by experimental observations of exotic standing wave patterns in
the two-frequency Faraday experiment, we investigate the role of normal form
symmetries in the pattern selection problem. With forcing frequency components
in ratio m/n, where m and n are co-prime integers, there is the possibility
that both harmonic and subharmonic waves may lose stability simultaneously,
each with a different wavenumber. We focus on this situation and compare the
case where the harmonic waves have a longer wavelength than the subharmonic
waves with the case where the harmonic waves have a shorter wavelength. We show
that in the former case a normal form transformation can be used to remove all
quadratic terms from the amplitude equations governing the relevant resonant
triad interactions. Thus the role of resonant triads in the pattern selection
problem is greatly diminished in this situation. We verify our general results
within the example of one-dimensional surface wave solutions of the
Zhang-Vinals model of the two-frequency Faraday problem. In one-dimension, a
1:2 spatial resonance takes the place of a resonant triad in our investigation.
We find that when the bifurcating modes are in this spatial resonance, it
dramatically effects the bifurcation to subharmonic waves in the case of
forcing frequencies are in ratio 1/2; this is consistent with the results of
Zhang and Vinals. In sharp contrast, we find that when the forcing frequencies
are in ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the
presence of another spatially-resonant bifurcating mode.Comment: 22 pages, 6 figures, late
Causality bounds for neutron-proton scattering
We consider the constraints of causality and unitarity for the low-energy
interactions of protons and neutrons. We derive a general theorem that
non-vanishing partial-wave mixing cannot be reproduced with zero-range
interactions without violating causality or unitarity. We define and calculate
interaction length scales which we call the causal range and the Cauchy-Schwarz
range for all spin channels up to J = 3. For some channels we find that these
length scales are as large as 5 fm. We investigate the origin of these large
lengths and discuss their significance for the choice of momentum cutoff scales
in effective field theory and universality in many-body Fermi systems.Comment: 36 pages, 10 figures, 7 tables, version to appear in Eur. Phys. J.
Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms
We report an experimental investigation of electromagnetically induced
transparency in a multi-level cascade system of cold atoms. The absorption
spectral profiles of the probe light in the multi-level cascade system were
observed in cold Rb-85 atoms confined in a magneto-optical trap, and the
dependence of the spectral profile on the intensity of the coupling laser was
investigated. The experimental measurements agree with the theoretical
calculations based on the density matrix equations of the rubidium cascade
system.Comment: 9 pages, 5 figure
Neutron/proton ratio of nucleon emissions as a probe of neutron skin
The dependence between neutron-to-proton yield ratio () and neutron
skin thickness () in neutron-rich projectile induced reactions is
investigated within the framework of the Isospin-Dependent Quantum Molecular
Dynamics (IQMD) model. The density distribution of the Droplet model is
embedded in the initialization of the neutron and proton densities in the
present IQMD model. By adjusting the diffuseness parameter of neutron density
in the Droplet model for the projectile, the relationship between the neutron
skin thickness and the corresponding in the collisions is obtained.
The results show strong linear correlation between and
for neutron-rich Ca and Ni isotopes. It is suggested that may be used
as an experimental observable to extract for neutron-rich nuclei,
which is very significant to the study of the nuclear structure of exotic
nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.
- …