50 research outputs found
Factors Affecting Students’ Continuous Intention to Use Online Art Education Software in Chengdu, China
Purpose: This study aims to explore the analysis of factors influencing the continuous use of online art education software by private art education institutions in Chengdu, Sichuan Province, China. The conceptual framework is based on TAM, UTAUT, and IS success model, indicating the relationship between self-efficacy, perceived ease of use, perceived usefulness, attitude, satisfaction, information quality, and continuous intention to use. Research design, data, and methodology: The researchers used quantitative methods (n=500) to distribute questionnaires to students at three private fine arts institutions. Confirmatory factor analysis (CFA) and a structural equation model (SEM) were used for data analysis, including model fitting, reliability, and validity of the structure. Results: The results indicate that satisfaction and attitude are significant factors affecting the continuous use intention of online art education software. Perceived ease of use has the most significant effect on perceived usefulness. Among them, the perceived usefulness and perceived ease of use significantly affect the attitude. Furthermore, information quality significantly impacts students’ satisfaction with using online art education software. However, self-efficacy has no significant effect on perceived ease of use. Conclusions: Therefore, this study suggests that educators should create a more suitable learning platform for combining technology and art in the course design and teaching of online art education software
Design Principle and Development Trends of Silicon-Based Anode Binders for Lithium-ion Batteries: A Mini Review
Abstract: Silicon (Si), recognized as a promising alternative material for the anodes of lithium-ion batteries, boasts a high theoretical specific capacity and abundant natural availability. During the preparation of silicon-based anodes, binders play a pivotal role in ensuring the cohesion of silicon particles, conductive agents, and current collectors. The structure and performance of these binders are critical for the mechanical stability, electrical conductivity, and stress dissipation capacity of the anodes. This review initially outlines the structural characteristics of various binders, including linear, branched, and three-dimensional cross-linked types. It then delves into the relationship between the structure and properties of these binders in the context of their application in high-performance lithium-ion batteries, focusing on their mechanical properties, electrical conductivity, and self-healing capabilities. Particular attention is given to the design strategies for binders that facilitate stress dissipation, with an emphasis on integrating multifunctional polymer binders renowned for their superior conductive and self-healing features. Such binders contribute to the formation of a robust three-dimensional network structure via multiple bonding mechanisms, including chemical, non-covalent, and coordination interactions. This configuration significantly enhances the adhesion between silicon particles, thereby facilitating the efficient dissipation of stress, which is a key aspect for ensuring the long-term cycling stability of lithium-ion batteries. Lastly, the paper explores future development directions for silicon anode binders, advocating for a thorough investigation into the synergy of diverse structural and functional combinations, with the aim of advancing the performance and practical application of silicon-based lithium-ion batteries
Susceptibility assessment of geological hazard based on XGBoost and cloud model
In the conventional process of geological hazard assessment, issues such as subjectivity in selecting susceptibility factor weights, randomness, and fuzziness in factor grading are prevalent. The application of a single assessment model can only provide qualitative evaluation of geological hazard susceptibility, lacking quantitative analysis. To overcome these challenges, this study employs an enhanced integrated algorithm (XGBoost) and cloud model. Among 189 disaster potential points in Chaoyang City, twelve susceptibility factors including slope, meteorological conditions, vegetation coverage and elevation were selected. The XGBoost classification algorithm was used to determine susceptibility factor weights. The results showed that the algorithm classification achieved high performance with fitting accuracy of 96.5%. On this basis, the cloud model was employed to transform the fuzzy factor grading into a quantitative problem, establishing a susceptibility evaluation index system for geological hazards in Chaoyang City, thereby assessing their susceptibility. To validate the evaluation index system, the Dadongshan landslide in Chaoyang City was selected as the assessment unit. Results indicate a high susceptibility level for this evaluation unit, consistent with actual conditions. The methodology proposed in this study is promising and can offers reference for evaluating geological hazard susceptibility
Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos
The CRISPR-Cas RNA-guided system has versatile uses in many organisms and allows modification of multiple target sites simultaneously. Generating novel genetically modified mouse and rat models is one valuable application of this system. Through the injection of Cas9 protein instead of mRNA into embryos, we observed fewer off-target effects of Cas9 and increased point mutation knock-in efficiency. Large genomic DNA fragment (up to 95 kb) deletion mice were generated for in vivo study of lncRNAs and gene clusters. Site-specific insertion of a 2.7 kb CreERT2 cassette into the mouse Nfatc1 locus allowed labeling and tracing of hair follicle stem cells. In addition, we combined the Cre-Loxp system with a gene-trap strategy to insert a GFP reporter in the reverse orientation into the rat Lgr5 locus, which was later inverted by Cre-mediated recombination, yielding a conditional knockout/reporter strategy suitable for mosaic mutation analysis
Acetylation of Histone H3K27 Signals the Transcriptional Elongation for Estrogen Receptor Alpha
As approximately 70% of human breast tumors are estrogen receptor α (ERα)-positive, estrogen and ERα play essential roles in breast cancer development. By interrupting the ERα signaling pathway, endocrine therapy has been proven to be an effective therapeutic strategy. In this study, we identified a mechanism by which Transcription Start Site (TSS)-associated histone H3K27 acetylation signals the Super Elongation Complex (SEC) to regulate transcriptional elongation of the ESR1 (ERα) gene. SEC interacts with H3K27ac on ESR1 TSS through its scaffold protein AFF4. Depletion of AFF4 by siRNA or CRISPR/Cas9 dramatically reduces expression of ESR1 and its target genes, consequently inhibiting breast cancer cell growth. More importantly, a AFF4 mutant which lacks H3K27ac interaction failed to rescue ESR1 gene expression, suggesting H3K27 acetylation at TSS region is a key mark bridging the transition from transcriptional initiation to elongation, and perturbing SEC function can be an alternative strategy for targeting ERα signaling pathway at chromatin level
Self-assembly of pericentriolar material in interphase cells lacking centrioles
The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole18 independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152 or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus25 end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement
CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC
γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process
CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC
γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process