155 research outputs found

    AFFLUENCE AND FOOD A Simple Way to Infer Incomes

    Get PDF
    Accurate and timely measures of cross-country real incomes are still a rarity. As the share of expenditure devoted to food is readily available, we use of Engel’s law in reciprocal form to measure affluence. Analysis of real income data for the OECD countries indicates that this approach is viable. To recognise the role of uncertainty in the analysis, we present the results in the form of stochastic cross-country income comparisons.

    Solar Thermal Conversion of Plasmonic Nanofluids: Fundamentals and Applications

    Get PDF
    Plasmonic nanofluids show great interests for light-matter applications due to the tunable optical properties. By tuning the nanoparticle (NP) parameters (material, shape, and size) or base fluid, plasmonic nanofluids can either absorb or transmit the specific solar spectrum and thus making nanofluids ideal candidates for various solar applications, such as: full spectrum absorption in direct solar absorption collectors, selective absorption or transmittance in solar photovoltaic/thermal (PV/T) systems, and local heating in the solar evaporation or nanobubble generation. In this chapter, we first summarized the preparation methods of plasmonic nanofluids, including the NP preparation based on the top-down and bottom-up, and the nanofluid preparation based on one-step and two-step. And then solar absorption performance of plasmonic nanofluids based on the theoretical and experimental design were discussed to broaden the absorption spectrum of plasmonic nanofluids. At last, solar thermal applications and challenges, including the applications of direct solar absorption collectors, solar PT/V systems, solar distillation, were introduced to promote the development of plasmon nanofluids

    Iron accumulation in the ventral tegmental area in Parkinson's disease

    Get PDF
    IntroductionThe ventral tegmental area (VTA) is less affected compared to substantia nigra pars compacta (SNc) in Parkinson's disease (PD). This study aimed to quantitatively evaluate iron content in the VTA across different stages of PD in order to help explain the selective loss of dopamine neurons in PD.MethodsQuantitative susceptibility mapping (QSM) data were obtained from 101 PD patients, 35 idiopathic rapid eye movement sleep behavior disorder (RBD) patients, and 62 healthy controls (HCs). The mean QSM values in the VTA and SNc were calculated and compared among the groups.ResultsBoth RBD and PD patients had increased iron values in the bilateral SNc compared with HCs. RBD and PD patients in the Hoehn–Yahr (H & Y) stage 1 did not show elevated iron values in the VTA, while PD patients with more than 1.5 H & Y staging had increased iron values in bilateral VTA compared to HCs.DiscussionThis study shows that there is no increased iron accumulation in the VTA during the prodromal and early clinical stages of PD, but iron deposition increases significantly as the disease becomes more severe

    Mutations in an Atypical TIR-NB-LRR-LIM Resistance Protein Confer Autoimmunity

    Get PDF
    In order to defend against microbial infection, plants employ a complex immune system that relies partly on resistance (R) proteins that initiate intricate signaling cascades upon pathogen detection. The resistance signaling network utilized by plants is only partially characterized. A genetic screen conducted to identify novel defense regulators involved in this network resulted in the isolation of the snc6-1D mutant. Positional cloning revealed that this mutant contained a molecular lesion in the chilling sensitive 3 (CHS3) gene, thus the allele was renamed chs3-2D. CHS3 encodes a TIR-NB-LRR R protein that contains a C-terminal zinc-binding LIM (Lin-11, Isl-1, Mec-3) domain. Although this protein has been previously implicated in cold stress and defense response, the role of the LIM domain in modulating protein activity is unclear. The chs3-2D allele contains a G to A point mutation causing a C1340 to Y1340 substitution close to the LIM domain. It encodes a dominant gain-of-function mutation. The chs3-2D mutant is severely stunted and displays curled leaf morphology. Additionally, it constitutively expresses PATHOGENESIS-RELATED (PR) genes, accumulates salicylic acid, and shows enhanced resistance to the virulent oomycete isolate Hyaloperonospora arabidopsidis (H.a.) Noco2. Subcellular localization assays using GFP fusion constructs indicate that both CHS3 and chs3-2D localize to the nucleus. A third chs3 mutant allele, chs3-3D, was identified in an unrelated genetic screen in our lab. This allele contains a C to T point mutation resulting in an M1017 to V1017 substitution in the LRR–LIM linker region. Additionally, a chs3-2D suppressor screen identified two revertant alleles containing secondary mutations that abolish the mutant morphology. Analysis of the locations of these molecular lesions provides support for the hypothesis that the LIM domain represses CHS3 R-like protein activity. This repression may occur through either autoinhibition or binding of a negative defense regulator

    Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents

    Get PDF
    Combined analytical techniques were used to explore the effects of alkali treatment on the multi-scale structure and digestion behavior of starches with different amylose/amylopectin ratios. Alkali treatment disrupted the amorphous matrix, and partial lamellae and crystallites, which weakened starch molecular packing and eventually enhanced the susceptibility of starch to alkali. Stronger alkali treatment (0.5% w/w) made this effect more prominent and even transformed the dual-phase digestion of starch into a triple-phase pattern. Compared with high-amylose starch, regular maize starch, which possesses some unique structure characteristics typically as pores and crystallite weak points, showed evident changes of hierarchical structure and in digestion rate. Thus, alkali treatment has been demonstrated as a simple method to modulate starch hierarchical structure and thus to realize the rational development of starch-based food products with desired digestibility

    Microwave-Assisted Synthesis of Co/CoOx Supported on Earth-Abundant Coal-Derived Carbon for Electrocatalysis of Oxygen Evolution

    Get PDF
    The evident demand for hydrogen as the ultimate energy fuel for posterity calls for the development of low-cost, efficient and stable electrocatalysts for water splitting. Herein, we report the synthesis of Co/CoOx supported on coal-derived N-doped carbon via a simple microwave-assisted method and demonstrate its application as an efficient catalyst for the oxygen evolution reaction (OER). With the optimal amount of cobalt introduced into the N-doped coal-derived, the developed catalyst achieved overpotentials of 0.370 and 0.429 V during water oxidation at current densities of 1 mA cm(-2) and 10 mA cm(-2), respectively. There was no noticeable loss in the activity of the catalyst during continuous galvanostatic polarization at a current density of 10 mA cm(-2) for a test period of 66 h. The synergistic interaction of the Co/CoOx moieties with the pyridinic and pyrollic nitrogen functional groups in the N-doped carbon, as well with the other heteroatoms species in the pristine coal favored enhancement of the OER electrocatalytic performance. (C) The Author(s) 2019. Published by ECS

    Synthesis of the System Modeling and Signal Detecting Circuit of a Novel Vacuum Microelectronic Accelerometer

    Get PDF
    A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %

    Efficient Interaction of HIV-1 with Purified Dendritic Cells via Multiple Chemokine Coreceptors

    Get PDF
    HIV-1 actively replicates in dendritic cell (DC)-T cell cocultures, but it has been difficult to demonstrate substantial infection of purified mature DCs. We now find that HIV-1 begins reverse transcription much more efficiently in DCs than T cells, even though T cells have higher levels of CD4 and gp120 binding. DCs isolated from skin or from blood precursors behave similarly. Several M-tropic strains and the T-tropic strain IIIB enter DCs efficiently, as assessed by the progressive formation of the early products of reverse transcription after a 90-min virus pulse at 37°C. However, few late gag-containing sequences are detected, so that active viral replication does not occur. The formation of these early transcripts seems to follow entry of HIV-1, rather than binding of virions that contain viral DNA. Early transcripts are scarce if DCs are exposed to virus on ice for 4 h, or for 90 min at 37°C, conditions which allow virus binding. Also the early transcripts once formed are insensitive to trypsin. The entry of a M-tropic isolates is blocked by the chemokine RANTES, and the entry of IIIB by SDF-1. RANTES interacts with CCR5 and SDF-1 with CXCR4 receptors. Entry of M-tropic but not T-tropic virus is ablated in DCs from individuals who lack a functional CCR5 receptor. DCs express more CCR5 and CXCR4 mRNA than T cells. Therefore, while HIV-1 does not replicate efficiently in mature DCs, viral entry can be active and can be blocked by chemokines that act on known receptors for M- and T-tropic virus

    Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma

    Get PDF
    The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magnetic resonance imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB patients were enrolled retrospectively. After selecting robust, non-redundant, and relevant features from 5,529 extracted radiomics features, a random forest model was constructed based on a training cohort (n= 92) and evaluated on a testing cohort (n= 30). By combining radiographic features and clinical parameters, two combined prediction models were also built. The subgroup can be classified using an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264 for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67% for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT and SHH, while that for Group 3 and Group 4 needs further improvements. Machine learning algorithms offer potentials to non-invasively predict the molecular subgroups of MB.</p
    corecore