9 research outputs found
Role of human Pegivirus infections in whole; Plasmodium falciparum; sporozoite vaccination and controlled human malaria infection in African volunteers
BACKGROUND: Diverse vaccination outcomes and protection levels among different populations pose a serious challenge to the development of an effective malaria vaccine. Co-infections are among many factors associated with immune dysfunction and sub-optimal vaccination outcomes. Chronic, asymptomatic viral infections can contribute to the modulation of vaccine efficacy through various mechanisms. Human Pegivirus-1 (HPgV-1) persists in immune cells thereby potentially modulating immune responses. We investigated whether Pegivirus infection influences vaccine-induced responses and protection in African volunteers undergoing whole P. falciparum sporozoites-based malaria vaccination and controlled human malaria infections (CHMI). METHODS: HPgV-1 prevalence was quantified by RT-qPCR in plasma samples of 96 individuals before, post vaccination with PfSPZ Vaccine and after CHMI in cohorts from Tanzania and Equatorial Guinea. The impact of HPgV-1 infection was evaluated on (1) systemic cytokine and chemokine levels measured by Luminex, (2) PfCSP-specific antibody titers quantified by ELISA, (3) asexual blood-stage parasitemia pre-patent periods and parasite multiplication rates, (4) HPgV-1 RNA levels upon asexual blood-stage parasitemia induced by CHMI. RESULTS: The prevalence of HPgV-1 was 29.2% (28/96) and sequence analysis of the 5' UTR and E2 regions revealed the predominance of genotypes 1, 2 and 5. HPgV-1 infection was associated with elevated systemic levels of IL-2 and IL-17A. Comparable vaccine-induced anti-PfCSP antibody titers, asexual blood-stage multiplication rates and pre-patent periods were observed in HPgV-1 positive and negative individuals. However, a tendency for higher protection levels was detected in the HPgV-1 positive group (62.5%) compared to the negative one (51.6%) following CHMI. HPgV-1 viremia levels were not significantly altered after CHMI. CONCLUSIONS: HPgV-1 infection did not alter PfSPZ Vaccine elicited levels of PfCSP-specific antibody responses and parasite multiplication rates. Ongoing HPgV-1 infection appears to improve to some degree protection against CHMI in PfSPZ-vaccinated individuals. This is likely through modulation of immune system activation and systemic cytokines as higher levels of IL-2 and IL17A were observed in HPgV-1 infected individuals. CHMI is safe and well tolerated in HPgV-1 infected individuals. Identification of cell types and mechanisms of both silent and productive infection in individuals will help to unravel the biology of this widely present but largely under-researched virus
Recognizing Early Childhood Education as a Human Right in International Law
There is incontrovertible evidence that early learning opportunities shape long-term development and health. Nevertheless, early childhood care and education (ECCE) is not expressly mentioned as part of the right to education in the Convention on the Rights of the Child, the International Covenant on Economic, Social and Cultural Rights, and the Convention on the Rights of Persons with Disabilities. This paper argues that the right to education can nevertheless be regarded as including ECCE. We examine the treaties, General Comments, and 264 Concluding Observations by relevant UN monitoring bodies, covering 152 countries from 2015 to 2020, to determine whether the right to ECCE is regarded as part of States' obligations and the content of the duty. These demonstrate consistently that States must provide affordable, accessible, quality, inclusive ECCE, with adequate resources. We argue that monitoring committees should draw these obligations together in one General Comment, thereby improving States' accountability and guiding the delivery of ECCE
Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial
Background Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites.
Methods We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5–36 months) were enrolled and randomly assigned (2:1) to receive 5 μg R21 plus 50 μg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing.
Findings From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71–79; p<0·0001) at the seasonal sites and 68% (61–74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71–78; p<0·0001) at the seasonal sites and 67% (59–73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762–974) cases per 1000 children-years at seasonal sites and 296 (231–362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5–17 month age group compared with 18–36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73–84]; p<0·001) and standard (75% [65–83]; p<0·001) sites.
Interpretation R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa.
Funding The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy
Comparison of Bioavailability Between the Most Available Generic Tablet Formulation Containing Artemether and Lumefantrine on the Tanzanian Market and the Innovator's Product.
Existence of anti-malarial generic drugs with low bioavailability marketed on sub-Saharan Africa has raised a concern on patients achieving therapeutic concentrations after intake of these products. This work compared bioavailability of one generic tablet formulation with innovator's product. Both were fixed dose combination tablet formulations containing artemether and lumefantrine.MethodologyThe study was conducted in Dar Es Salaam, Tanzania, in which a survey of the most abundant generic containing artemether-lumefantrine tablet formulation was carried out in retail pharmacies. The most widely available generic (Artefan(R), Ajanta Pharma Ltd, Maharashtra, India) was sampled for bioavailability comparison with Coartem(R) (Novartis Pharma, Basel, Switzerland) - the innovator's product. A randomized, two-treatment cross-over study was conducted in 18 healthy Tanzanian black male volunteers. Each volunteer received Artefan(R) (test) and Coartem(R) (as reference) formulation separated by 42 days of drug-free washout period. Serial blood samples were collected up to 168 hours after oral administration of a single dose of each treatment. Quantitation of lumefantrine plasma levels was done using HPLC with UV detection. Bioequivalence of the two products was assessed in accordance with the US Food and Drug Authority (FDA) guidelines. The most widely available generic in pharmacies was Artefan(R) from India. All eighteen enrolled volunteers completed the study and both test and reference tablet formulations were well tolerated. It was possible to quantify lumefantrine alone, therefore, the pharmacokinetic parameters reported herein are for lumefantrine. The geometric mean ratios for Cmax, AUC0-t and AUC0-[infinity] were 84% in all cases and within FDA recommended bioequivalence limits of 80% -- 125%, but the 90% confidence intervals were outside FDA recommended limits (CI 49--143%, 53 - 137%, 52 - 135% respectively). There were no statistical significant differences between the two formulations with regard to PK parameters (P > 0.05). Although the ratios of AUCs and Cmax were within the acceptable FDA range, bioequivalence between Artefan(R) and Coartem(R) tablet formulations was not demonstrated due to failure to comply with the FDA 90 % confidence interval criteria. Based on the observed total drug exposure (AUCs), Artefan(R) is likely to produce a similar therapeutic response as Coartem(R)
Safety and immunogenicity of radiation-attenuated PfSPZ vaccine in equatoguinean infants, children, and adults
The radiation-attenuated Plasmodium falciparum sporozoites (PfSPZ) Vaccine has demonstrated safety and immunogenicity in 5-month-old to 50-year-old Africans in multiple trials. Except for one, each trial has restricted enrollment to either infants and children or adults /= 0.17). There were no significant differences between vaccinees and controls with respect to the rates or severity of unsolicited AEs or laboratory abnormalities. Development of antibodies to P. falciparum circumsporozoite protein occurred in 67/69 vaccinees (97%) and 0/15 controls. Median antibody levels were highest in infants and 1-5-year-olds and declined progressively with age. Antibody responses in children were greater than in adults protected against controlled human malaria infection. Robust immunogenicity, combined with a benign AE profile, indicates children are an ideal target for immunization with PfSPZ Vaccine
Advancing global health through development and clinical trials partnerships: a randomized, placebo-controlled, double-blind assessment of safety, tolerability, and Immunogenicity of Plasmodium falciparum sporozoites vaccine for malaria in healthy Equatoguinean men
Equatorial Guinea (EG) has implemented a successful malaria control program on Bioko Island. A highly effective vaccine would be an ideal complement to this effort and could lead to halting transmission and eliminating malaria. Sanaria® PfSPZ Vaccine (Plasmodium falciparum sporozoite Vaccine) is being developed for this purpose. To begin the process of establishing the efficacy of and implementing a PfSPZ Vaccine mass vaccination program in EG, we decided to conduct a series of clinical trials of PfSPZ Vaccine on Bioko Island. Because no clinical trial had ever been conducted in EG, we first successfully established the ethical, regulatory, quality, and clinical foundation for conducting trials. We now report the safety, tolerability, and immunogenicity results of the first clinical trial in the history of the country. Thirty adult males were randomized in the ratio 2:1 to receive three doses of 2.7 × 105 PfSPZ of PfSPZ Vaccine (N = 20) or normal saline placebo (N = 10) by direct venous inoculation at 8-week intervals. The vaccine was safe and well tolerated. Seventy percent, 65%, and 45% of vaccinees developed antibodies to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) by enzyme-linked immunosorbent assay, PfSPZ by automated immunofluorescence assay, and PfSPZ by inhibition of sporozoite invasion assay, respectively. Antibody responses were significantly lower than responses in U.S. adults who received the same dosage regimen, but not significantly different than responses in young adult Malians. Based on these results, a clinical trial enrolling 135 subjects aged 6 months to 65 years has been initiated in EG; it includes PfSPZ Vaccine and first assessment in Africa of PfSPZ-CVac. ClinicalTrials.gov identifier: NCT02418962
Enhancing the routine health information system in rural southern Tanzania: successes, challenges and lessons learned.
OBJECTIVE\ud
\ud
To describe and evaluate the use of handheld computers for the management of Health Management Information System data.\ud
\ud
METHODS\ud
\ud
Electronic data capture took place in 11 sentinel health centres in rural southern Tanzania. Information from children attending the outpatient department (OPD) and the Expanded Program on Immunization vaccination clinic was captured by trained local school-leavers, supported by monthly supervision visits. Clinical data included malaria blood slides and haemoglobin colour scale results. Quality of captured data was assessed using double data entry. Malaria blood slide results from health centre laboratories were compared to those from the study's quality control laboratory.\ud
\ud
RESULTS\ud
\ud
The system took 5 months to implement, and few staffings or logistical problems were encountered. Over the following 12 months (April 2006-March 2007), 7056 attendances were recorded in 9880 infants aged 2-11 months, 50% with clinical malaria. Monthly supervision visits highlighted incomplete recording of information between OPD and laboratory records, where on average 40% of laboratory visits were missing the record of their corresponding OPD visit. Quality of microscopy from health facility laboratories was lower overall than that from the quality assurance laboratory.\ud
\ud
CONCLUSIONS\ud
\ud
Electronic capture of HMIS data was rapidly and successfully implemented in this resource-poor setting. Electronic capture alone did not resolve issues of data completeness, accuracy and reliability, which are essential for management, monitoring and evaluation; suggestions to monitor and improve data quality are made
Immunogenicity and protective efficacy of radiation-attenuated and chemo-attenuated PfSPZ vaccines in Equatoguinean adults
Plasmodium falciparum sporozoite (PfSPZ) Vaccine (radiation-attenuated, aseptic, purified, cryopreserved PfSPZ) and PfSPZ-CVac (infectious, aseptic, purified, cryopreserved PfSPZ administered to subjects taking weekly chloroquine chemoprophylaxis) have shown vaccine efficacies (VEs) of 100% against homologous controlled human malaria infection (CHMI) in nonimmune adults. Plasmodium falciparum sporozoite-CVac has never been assessed against CHMI in African vaccinees. We assessed the safety, immunogenicity, and VE against homologous CHMI of three doses of 2.7 x 10(6) PfSPZ of PfSPZ Vaccine at 8-week intervals and three doses of 1.0 x 10(5) PfSPZ of PfSPZ-CVac at 4-week intervals with each arm randomized, double-blind, placebo-controlled, and conducted in parallel. There were no differences in solicited adverse events between vaccinees and normal saline controls, or between PfSPZ Vaccine and PfSPZ-CVac recipients during the 6 days after administration of investigational product. However, from days 7-13, PfSPZ-CVac recipients had significantly more AEs, probably because of Pf parasitemia. Antibody responses were 2.9 times higher in PfSPZ Vaccine recipients than PfSPZ-CVac recipients at time of CHMI. Vaccine efficacy at a median of 14 weeks after last PfSPZ-CVac dose was 55% (8 of 13, P = 0.051) and at a median of 15 weeks after last PfSPZ Vaccine dose was 27% (5 of 15, P = 0.32). The higher VE in PfSPZ-CVac recipients of 55% with a 27-fold lower dose was likely a result of later stage parasite maturation in the liver, leading to induction of cellular immunity against a greater quantity and broader array of antigens