2,199 research outputs found

    Thick GEM-like multipliers - a simple solution for large area UV-RICH detectors

    Full text link
    We report on the properties of thick GEM-like (THGEM) electron multipliers made of 0.4 mm thick double-sided Cu-clad G-10 plates, perforated with a dense hexagonal array of 0.3 mm diameter drilled holes. Photon detectors comprising THGEMs coupled to semi-transparent CsI photocathodes or reflective ones deposited on the THGEM surface were studied with Ar/CO2 (70:30), Ar/CH4 (95:5), CH4 and CF4. Gains of ~100000 or exceeding 1000000 were reached with single- or double-THGEM, respectively; the signals have 5-10 ns rise times. The electric field configurations at the THGEM electrodes result in an efficient extraction of photoelectrons and their focusing into the holes; this occurs already at rather low gains, below 100. These detectors, with single-photon sensitivity and with expected sub-millimeter localization, can operate at MHz/mm2 rates. We discuss their prospects for large-area UV-photon imaging for RICH.Comment: 5 pages, 6 figure

    Advances in imaging THGEM-based detectors

    Get PDF
    The thick GEM (THGEM) [1] is an "expanded" GEM, economically produced in the PCB industry by simple drilling and etching in G-10 or other insulating materials (fig. 1). Similar to GEM, its operation is based on electron gas avalanche multiplication in sub-mm holes, resulting in very high gain and fast signals. Due to its large hole size, the THGEM is particularly efficient in transporting the electrons into and from the holes, leading to efficient single-electron detection and effective cascaded operation. The THGEM provides true pixilated radiation localization, ns signals, high gain and high rate capability. For a comprehensive summary of the THGEM properties, the reader is referred to [2, 3]. In this article we present a summary of our recent study on THGEM-based imaging, carried out with a 10x10 cm^2 double-THGEM detector.Comment: 3 pages, 3 figures. Presented at the 10th Pisa Meeting on Advanced Detectors; ELBA-Italy; May 21-27 200
    corecore