2,199 research outputs found
Thick GEM-like multipliers - a simple solution for large area UV-RICH detectors
We report on the properties of thick GEM-like (THGEM) electron multipliers
made of 0.4 mm thick double-sided Cu-clad G-10 plates, perforated with a dense
hexagonal array of 0.3 mm diameter drilled holes. Photon detectors comprising
THGEMs coupled to semi-transparent CsI photocathodes or reflective ones
deposited on the THGEM surface were studied with Ar/CO2 (70:30), Ar/CH4 (95:5),
CH4 and CF4. Gains of ~100000 or exceeding 1000000 were reached with single- or
double-THGEM, respectively; the signals have 5-10 ns rise times. The electric
field configurations at the THGEM electrodes result in an efficient extraction
of photoelectrons and their focusing into the holes; this occurs already at
rather low gains, below 100. These detectors, with single-photon sensitivity
and with expected sub-millimeter localization, can operate at MHz/mm2 rates. We
discuss their prospects for large-area UV-photon imaging for RICH.Comment: 5 pages, 6 figure
Advances in imaging THGEM-based detectors
The thick GEM (THGEM) [1] is an "expanded" GEM, economically produced in the
PCB industry by simple drilling and etching in G-10 or other insulating
materials (fig. 1). Similar to GEM, its operation is based on electron gas
avalanche multiplication in sub-mm holes, resulting in very high gain and fast
signals. Due to its large hole size, the THGEM is particularly efficient in
transporting the electrons into and from the holes, leading to efficient
single-electron detection and effective cascaded operation. The THGEM provides
true pixilated radiation localization, ns signals, high gain and high rate
capability. For a comprehensive summary of the THGEM properties, the reader is
referred to [2, 3]. In this article we present a summary of our recent study on
THGEM-based imaging, carried out with a 10x10 cm^2 double-THGEM detector.Comment: 3 pages, 3 figures. Presented at the 10th Pisa Meeting on Advanced
Detectors; ELBA-Italy; May 21-27 200
- …
