458 research outputs found

    Risk Structured Model of Cholera Infections In Cameroon

    Get PDF

    Mineralogy and sand surface morphology of selected andisols from west Sumatra

    Get PDF
    Andisols from Mt. Marapi and Mt. Pasaman in west Sumatra, Indonesia were studied to characterize their mineralogy and the surface morphology of the sand grains. The minerals in the sand grains included quartz, plagioclase, hornblende, augite, hypersthene, olivine and volcanic glass having different surface morphology. The morphology surface features present are bubbles, pitted, curve platy and sponge-like. Some of the sand grains are coated with amorphous materials. Halloysite is confirmed by the presence of strong peaks of Si and Al and a weak peak of Fe on the SEM-EDX spectra. The clay fraction is composed mainly of allophane, cristobalite, feldspars and halloysite. Soils from the Mt. Pasaman have some gibbsite, while those of the Mt. Marapi have opaline silica in the surface horizons. The abundance of opaline silica tends to decrease with the age of the volcanic ash soils

    Fungi used for pest management in crop production

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Scaling of Traction Forces with Size of Cohesive Cell Colonies

    Full text link
    To understand how the mechanical properties of tissues emerge from interactions of multiple cells, we measure traction stresses of cohesive colonies of 1-27 cells adherent to soft substrates. We find that traction stresses are generally localized at the periphery of the colony and the total traction force scales with the colony radius. For large colony sizes, the scaling appears to approach linear, suggesting the emergence of an apparent surface tension of order 1E-3 N/m. A simple model of the cell colony as a contractile elastic medium coupled to the substrate captures the spatial distribution of traction forces and the scaling of traction forces with the colony size.Comment: 5 pages, 3 figure
    corecore