458 research outputs found
Recommended from our members
Lifespan-increasing drug nordihydroguaiaretic acid inhibits p300 and activates autophagy.
Aging is characterized by the progressive loss of physiological function in all organisms. Remarkably, the aging process can be modulated by environmental modifications, including diet and small molecules. The natural compound nordihydroguaiaretic acid (NDGA) robustly increases lifespan in flies and mice, but its mechanism of action remains unclear. Here, we report that NDGA is an inhibitor of the epigenetic regulator p300. We find that NDGA inhibits p300 acetyltransferase activity in vitro and suppresses acetylation of a key p300 target in histones (i.e., H3K27) in cells. We use the cellular thermal shift assay to uniquely demonstrate NDGA binding to p300 in cells. Finally, in agreement with recent findings indicating that p300 is a potent blocker of autophagy, we show that NDGA treatment induces autophagy. These findings identify p300 as a target of NDGA and provide mechanistic insight into its role in longevity
Mineralogy and sand surface morphology of selected andisols from west Sumatra
Andisols from Mt. Marapi and Mt. Pasaman in west Sumatra, Indonesia were studied to characterize their mineralogy and the surface morphology of the sand grains. The minerals in the sand grains included quartz, plagioclase, hornblende, augite, hypersthene, olivine and volcanic glass having different surface morphology. The morphology surface features present are bubbles, pitted, curve platy and sponge-like. Some of the sand grains are coated with amorphous materials. Halloysite is confirmed by the presence of strong peaks of Si and Al and a weak peak of Fe on the SEM-EDX spectra. The clay fraction is composed mainly of allophane, cristobalite, feldspars and halloysite. Soils from the Mt. Pasaman have some gibbsite, while those of the Mt. Marapi have opaline silica in the surface horizons. The abundance of opaline silica tends to decrease with the age of the volcanic ash soils
Fungi used for pest management in crop production
The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
Scaling of Traction Forces with Size of Cohesive Cell Colonies
To understand how the mechanical properties of tissues emerge from
interactions of multiple cells, we measure traction stresses of cohesive
colonies of 1-27 cells adherent to soft substrates. We find that traction
stresses are generally localized at the periphery of the colony and the total
traction force scales with the colony radius. For large colony sizes, the
scaling appears to approach linear, suggesting the emergence of an apparent
surface tension of order 1E-3 N/m. A simple model of the cell colony as a
contractile elastic medium coupled to the substrate captures the spatial
distribution of traction forces and the scaling of traction forces with the
colony size.Comment: 5 pages, 3 figure
- …