156 research outputs found

    Open Issues on the Synthesis of Evolved Stellar Populations at Ultraviolet Wavelengths

    Full text link
    In this paper we briefly review three topics that have motivated our (and others') investigations in recent years within the context of evolutionary population synthesis techniques. These are: The origin of the FUV up-turn in elliptical galaxies, the age-metallicity degeneracy, and the study of the mid-UV rest-frame spectra of distant red galaxies. We summarize some of our results and present a very preliminary application of a UV grid of theoretical spectra in the analysis of integrated properties of aged stellar populations. At the end, we concisely suggest how these topics can be tackled once the World Space Observatory enters into operation in the midst of this decade.Comment: 8 pages, 4 figures, accepted for publication in Astrophysics & Space Science, UV Universe special issu

    Conservation and prioritization of indigenous vegetables in the Philippines

    Get PDF
    Nutrition-related problems are a widespread challenge in the Philippines. Many factors contribute to these problems - the availability and affordability of vegetables, for example, which are jeopardized by challenges such as seasonality and inconsistent yields due to the impacts of climate change. Crop improvement and on-farm diversification, particularly using indigenous vegetables (IVs), can help address these challenges, while also improving rural livelihoods, nutrition, and food security; and even safeguarding local culture and tradition

    Multiwavelength Photometry and Progenitor Analysis of the Nova V906 Car

    Get PDF
    We present optical and infrared photometry of the classical nova V906 Car, also known as Nova Car 2018 and ASASSN-18fv, which was discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) on 2018 March 16.32 UT (MJD 58193.0). The nova reached its maximum on MJD 58222.56 at V max = 5.84 ± 0.09 mag, and had decline times of t2, v = 26.2 days and t3, v = 33.0 days. The data from Evryscope shows that the nova had already brightened to g' ≈ 13 mag five days before discovery, as compared with its quiescent magnitude of g = 20.13 ± 0.03. The extinction toward the nova, as derived from high-resolution spectroscopy, shows an estimate consistent with foreground extinction to the Carina Nebula of Av=1.11+0.54-0.39. The light curve resembles a rare C (cusp) class nova with a steep decline slope of α =-3.94 post-cusp flare. From the light-curve decline rate, we estimate the mass of the white dwarf to be M WD = <0.8M o˙, consistent with MWD = 0.71+0.23-0.19 derived from modeling the accretion disk of the system in quiescence. The donor star is likely a K-M dwarf of 0.23-0.43 Mo˙, which is heated by its companion

    Conserving and prioritizing indigenous fruits in the Philippines

    Get PDF
    Nutrition-related problems are a widespread challenge in the Philippines. Many factors contribute to these problems - the availability and affordability of fruits, for example, which are jeopardized by challenges such as seasonality and inconsistent yields due to the impacts of climate change. Crop improvement and on-farm diversification, particularly using indigenous fruits (IFs), can help address these challenges, while also improving rural livelihoods, nutrition, food security; and even safeguarding local culture and tradition

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Revisiting the HD 21749 planetary system with stellar activity modelling

    Get PDF
    HD 21749 is a bright (V = 8.1 mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by Transiting Exoplanet Survey Satellite (TESS). Follow-up spectroscopic observations measured the mass of HD 21749b to be 22.7 ± 2.2 M with a density of 7.0^{+1.6}_{-1.3} g cm-3, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here, we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational time-scale as the planet's orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian process regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of 2.86 ± 0.20 R, an orbital period of 35.6133 ± 0.0005 d with a mass of Mb = 20.0 ± 2.7 M and a density of 4.8^{+2.0}_{-1.4} g cm-3 on an eccentric orbit with e = 0.16 ± 0.06, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of 7.7902 ± 0.0006 d, a radius of 1.13 ± 0.10 R, and a 3σ mass upper limit of 3.5 M. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar

    A search for the decay B+→K+ΜΜˉB^+ \to K^+ \nu \bar{\nu}

    Get PDF
    We search for the rare flavor-changing neutral-current decay B+→K+ΜΜˉB^+ \to K^+ \nu \bar{\nu} in a data sample of 82 fb−1^{-1} collected with the {\sl BABAR} detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged-B decay. Using these two independent samples we obtain a combined limit of B(B+→K+ΜΜˉ)<5.2×10−5{\mathcal B}(B^+ \to K^+ \nu \bar{\nu})<5.2 \times 10^{-5} at the 90% confidence level. In addition, by selecting for pions rather than kaons, we obtain a limit of B(B+→π+ΜΜˉ)<1.0×10−4{\mathcal B}(B^+ \to \pi^+ \nu \bar{\nu})<1.0 \times 10^{-4} using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let
    • 

    corecore