10 research outputs found

    A Complementation Assay for in Vivo Protein Structure/Function Analysis in \u3cem\u3ePhyscomitrella patens\u3c/em\u3e (Funariaceae)

    Get PDF
    Premise of Study: A method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. Methods and Results: A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Western blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. Conclusions: Compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants

    Cellulose synthase ‘class specific regions’ are intrinsically disordered and functionally undifferentiated

    Get PDF
    Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose non‐interchangeable members play distinct roles within cellulose synthesis complexes (CSCs). A ‘class specific region’ (CSR), with higher sequence similarity within versus between functional CESA classes, has been suggested to contribute to specific activities or interactions of different isoforms. We investigated CESA isoform specificity in the moss, Physcomitrella patens (Hedw.) B. S. G. to gain evolutionary insights into CESA structure/function relationships. Like seed plants, P. patens has oligomeric rosette‐type CSCs, but the PpCESAs diverged independently and form a separate CESA clade. We showed that P. patens has two functionally distinct CESAs classes, based on the ability to complement the gametophore‐negative phenotype of a ppcesa5 knockout line. Thus, non‐interchangeable CESA classes evolved separately in mosses and seed plants. However, testing of chimeric moss CESA genes for complementation demonstrated that functional class‐specificity is not determined by the CSR. Sequence analysis and computational modeling showed that the CSR is intrinsically disordered and contains predicted molecular recognition features, consistent with a possible role in CESA oligomerization and explaining the evolution of class‐specific sequences without selection for class‐specific function

    Functional Specialization of Cellulose Synthase Isoforms in a Moss Shows Parallels with Seed Plants

    Get PDF
    The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens. Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis

    Identification, characterization, and distribution of Acidovorax avenae subsp. avenae associated with creeping bentgrass etiolation and decline

    No full text
    Bacterial etiolation and decline caused by Acidovorax avenae subsp. avenae is an emerging disease of creeping bentgrass (Agrostis stolonifera) in and around the transition zone, a unique area of turfgrass culture between cool and warm regions of the United States. It is suspected that the disease has been present for many years, although diagnosis of the first occurrence was not reported until 2010. Solicitation of samples from golf courses in 2010 and 2011 was undertaken to investigate the prevalence and dissemination of Acidovorax avenae subsp. avenae on creeping bentgrass. At least 21 isolates from 13 states associated with these outbreaks on golf courses were confirmed as A. avenae subsp. avenae by pathogenicity assays and 16S rDNA sequence analysis at two independent locations. Pathogenicity testing of bacterial isolates from creeping bentgrass samples exhibiting heavy bacterial streaming confirmed A. avenae subsp. avenae as the only bacterium to cause significant disease symptoms and turfgrass decline. Host range inoculations revealed isolates of A. avenae subsp. avenae to be pathogenic on all Agrostis stolonifera cultivars tested, with slight but significant differences in disease severity on particular cultivars. Other turfgrass hosts tested were only mildly susceptible to Acidovorax avenae subsp. avenae infection. This study initiated research on A. avenae subsp. avenae pathogenicity causing a previously uncharacterized disease of creeping bentgrass putting greens in the United States. © 2012 The American Phytopathological Society

    Cellulose synthesis complexes are homo-oligomeric and hetero-oligomeric in Physcomitrium patens

    No full text
    The common ancestor of seed plants and mosses contained homo-oligomeric cellulose synthesis complexes (CSCs) composed of identical subunits encoded by a single CELLULOSE SYNTHASE (CESA) gene. Seed plants use different CESA isoforms for primary and secondary cell wall deposition. Both primary and secondary CESAs form hetero-oligomeric CSCs that assemble and function in planta only when all the required isoforms are present. The moss Physcomitrium (Physcomitrella) patens has seven CESA genes that can be grouped into two functionally and phylogenetically distinct classes. Previously, we showed that PpCESA3 and/or PpCESA8 (class A) together with PpCESA6 and/or PpCESA7 (class B) form obligate hetero-oligomeric complexes required for normal secondary cell wall deposition. Here, we show that gametophore morphogenesis requires a member of class A, PpCESA5, and is sustained in the absence of other PpCESA isoforms. PpCESA5 also differs from the other class A PpCESAs as it is able to self-interact and does not co-immunoprecipitate with other PpCESA isoforms. These results are consistent with the hypothesis that homo-oligomeric CSCs containing only PpCESA5 subunits synthesize cellulose required for gametophore morphogenesis. Analysis of mutant phenotypes also revealed that, like secondary cell wall deposition, normal protonemal tip growth requires class B isoforms (PpCESA4 or PpCESA10), along with a class A partner (PpCESA3, PpCESA5, or PpCESA8). Thus, P. patens contains both homo-oligomeric and hetero-oligomeric CSCs

    Functional characterization of a glycosyltransferase from the moss physcomitrella patens involved in the biosynthesis of a novel cell wall arabinoglucan

    No full text
    Mixed-linkage (1,3;1,4)-ÎČ-glucan (MLG), an abundant cell wall polysaccharide in the Poaceae, has been detected in ascomycetes, algae, and seedless vascular plants, but not in eudicots. Although MLG has not been reported in bryophytes, a predicted glycosyltransferase from the moss Physcomitrella patens (Pp3c12_24670) is similar to a bona fide ascomycete MLG synthase. We tested whether Pp3c12_24670 encodes an MLG synthase by expressing it in wild tobacco (Nicotiana benthamiana) and testing for release of diagnostic oligosaccharides from the cell walls by either lichenase or (1,4)-ÎČ-glucan endohydrolase. Lichenase, an MLG-specific endohydrolase, showed no activity against cell walls from transformed N. benthamiana, but (1,4)-ÎČ-glucan endohydrolase released oligosaccharides that were distinct from oligosaccharides released from MLG by this enzyme. Further analysis revealed that these oligosaccharides were derived from a novel unbranched, unsubstituted arabinoglucan (AGlc) polysaccharide. We identified sequences similar to the P. patens AGlc synthase from algae, bryophytes, lycophytes, and monilophytes, raising the possibility that other early divergent plants synthesize AGlc. Similarity of P. patens AGlc synthase to MLG synthases from ascomycetes, but not those from Poaceae, suggests that AGlc and MLG have a common evolutionary history that includes loss in seed plants, followed by a more recent independent origin of MLG within the monocots
    corecore