288 research outputs found

    Dental Abnormalities and Early Diagnosis of Hyperphosphatasemia

    Get PDF
    Dental hard tissue abnormalities have never been described as part of the symptoms associated with hyperphosphatasemia. Fourteen teeth obtained from a young man, who had a mild form of hyperphosphatasemia, were analyzed using scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), and infrared (IR) spectroscopy. SEM revealed a thin enamel, presenting a prismatic structure with many pits, and atypical cementum and dentin showing numerous resorption areas. The X-ray diffractograms revealed poorly crystallinehydroxyapatite associated with α-tricalcium phosphate and magnesium hydroxide phases. SIMS data showed high Ca concentrations: 40.5 weight % {wt%; standard deviation (SD) = 0.13) and 42.5 wt% (SD = 1.03) in enamel and dentin respectively, and high Ca/P weight ratios: 2.28 in the enamel, 2.65 in the dentin. The lack of crystallinity may be linked to the high content of proteins and magnesium adsorbed onto apatite. This study demonstrates the need for thorough radiographical and biological investigations for skeletal abnormalities, even in the absence of systemic symptoms, when generalized dental abnormalities of both enamel and dentin are observed

    The production of short-lived radionuclides by new non-rotating and rotating Wolf-Rayet model stars

    Full text link
    It has been speculated that WR winds may have contaminated the forming solar system, in particular with short-lived radionuclides (half-lives in the approximate 10^5 - 10^8 y range) that are responsible for a class of isotopic anomalies found in some meteoritic materials. We revisit the capability of the WR winds to eject these radionuclides using new models of single non-exploding WR stars with metallicity Z = 0.02. The earlier predictions for non-rotating WR stars are updated, and models for rotating such stars are used for the first time in this context. We find that (1) rotation has no significant influence on the short-lived radionuclide production by neutron capture during the core He-burning phase, and (2) 26Al, 36Cl, 41Ca, and 107Pd can be wind-ejected by a variety of WR stars at relative levels that are compatible with the meteoritic analyses for a period of free decay of around 10^5 y between production and incorporation into the forming solar system solid bodies. We confirm the previously published conclusions that the winds of WR stars have a radionuclide composition that can meet the necessary condition for them to be a possible contaminating agent of the forming solar system. Still, it remains to be demonstrated from detailed models that this is a sufficient condition for these winds to have provided a level of pollution that is compatible with the observations.Comment: 8 pages, 8 figure

    A perspective from extinct radionuclides on a Young Stellar Object: The Sun and its accretion disk

    Full text link
    Meteorites, which are remnants of solar system formation, provide a direct glimpse into the dynamics and evolution of a young stellar object (YSO), namely our Sun. Much of our knowledge about the astrophysical context of the birth of the Sun, the chronology of planetary growth from micrometer-sized dust to terrestrial planets, and the activity of the young Sun comes from the study of extinct radionuclides such as 26Al (t1/2 = 0.717 Myr). Here we review how the signatures of extinct radionuclides (short-lived isotopes that were present when the solar system formed and that have now decayed below detection level) in planetary materials influence the current paradigm of solar system formation. Particular attention is given to tying meteorite measurements to remote astronomical observations of YSOs and modeling efforts. Some extinct radionuclides were inherited from the long-term chemical evolution of the Galaxy, others were injected into the solar system by a nearby supernova, and some were produced by particle irradiation from the T-Tauri Sun. The chronology inferred from extinct radionuclides reveals that dust agglomeration to form centimeter-sized particles in the inner part of the disk was very rapid (<50 kyr), planetesimal formation started early and spanned several million years, planetary embryos (possibly like Mars) were formed in a few million years, and terrestrial planets (like Earth) completed their growths several tens of million years after the birth of the Sun.Comment: 49 pages, 9 figures, 1 table. Uncorrected preprin

    Angular clustering properties of the DESI QSO target selection using DR9 Legacy Imaging Surveys

    Get PDF
    The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the next 5 yr. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as well as stellar and galactic contaminants, and to develop a procedure to mitigate them. Density fluctuations of quasar targets are found to be related to photometric properties such as seeing and depth of the Data Release 9 of the DESI Legacy Imaging Surveys. To model this complex relation, we explore machine learning algorithms (random forest and multilayer perceptron) as an alternative to the standard linear regression. Splitting the footprint of the Legacy Imaging Surveys into three regions according to photometric properties, we perform an independent analysis in each region, validating our method using extended Baryon Oscillation Spectroscopic Survey (eBOSS) EZ-mocks. The mitigation procedure is tested by comparing the angular correlation of the corrected target selection on each photometric region to the angular correlation function obtained using quasars from the Sloan Digital Sky Survey (SDSS) Data Release 16. With our procedure, we recover a similar level of correlation between DESI quasar targets and SDSS quasars in two-thirds of the total footprint and we show that the excess of correlation in the remaining area is due to a stellar contamination that should be removed with DESI spectroscopic data. We derive the Limber parameters in our three imaging regions and compare them to previous measurements from SDSS and the 2dF QSO Redshift Survey

    Measuring Solar Abundances

    Get PDF
    This is the rapporteur paper of Working Group 2 on Measuring Solar Abundances. The working group presented and discussed the different observations and methods for obtaining the elemental and isotopic composition of the Sun, and critically reviewed their results and the accuracies thereof. Furthermore, a few important yet unanswered questions were identified, and the potential of future missions to provide answers was assessed

    Oxygen isotope heterogeneity of the mantle beneath the Canary Islands : insights from olivine phenocrysts

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 162 (2011): 349-363, doi:10.1007/s00410-010-0600-5.A relatively narrow range of oxygen isotopic ratios (δ18O = 5.05.4‰) is preserved in olivine of mantle xenoliths, mid-ocean ridge (MORB) and most ocean island basalts (OIB). The values in excess of this range are generally attributed either to the presence of a recycled component in the Earth’s mantle or to shallow level contamination processes. A viable way forward to trace source heterogeneity is to find a link between chemical (elemental and isotopic) composition of the earlier crystallized mineral phases (olivine) and the composition of their parental magmas, then using them to reconstruct the composition of source region. The Canary hotspot is one of a few that contains ~1-2 Ga old recycled ocean crust that can be traced to the core-mantle boundary using seismic tomography and whose origin is attributed to the mixing of at least three main isotopically distinct mantle components i.e., HIMU, DMM and EM. This work reports ion microprobe and single crystal laser fluorination oxygen isotope data of 148 olivine grains also analyzed for major and minor elements in the same spot. The olivines are from 20 samples resembling the most primitive shield stage picrite through alkali basalt to basanite series erupted on Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro, Canary Islands, for which shallow level contamination processes were not recognized. A broad range of δ18Oolivine values from 4.6 to 6.1‰ was obtained and explained by stable, long-term oxygen isotope heterogeneity of crystal cumulates present under different volcanoes. These cumulates are thought to have crystallized from mantle derived magmas uncontaminated at crustal depth, representing oxygen isotope heterogeneity of source region. A relationship between Ni×FeO/MgO and δ18Oolivine values found in one basanitic lava erupted on El Hierro, the westernmost island of the Canary Archipelago, was used to estimate oxygen isotope compositions of partial melts presumably originated from peridotite (HIMU-type component inherited its radiogenic isotope composition from ancient, ~12 Ga, recycled ocean crust) and pyroxenite (young, <1 Ga, recycled oceanic crust preserved as eclogite with depleted MORB-type isotopic signature) components of the Canary plume. The model calculations yield 5.2 and 5.9±0.3‰ for peridotite and pyroxenite derived melts, respectively, which appeared to correspond closely to the worldwide HIMU-type OIB and upper limit N-MORB δ18O values. This difference together with the broad range of δ18O variations found in the Canarian olivines cannot be explained by thermodynamic effects of oxygen isotopic fractionation and are believed to represent true variations in the mantle, due to oceanic crust and continental lithosphere recycling.This work was supported by the CNRS “poste rouge” grant to AG, the NSF EAR-CAREER-0844772 grant to IB and the CRPG-CNRS and at its initial stage by the DFG (grant SCHM 250/64) and the Alexander von Humboldt Foundation (Wolfgang Paul Award to A.V. Sobolev who provided access to the electron microprobe at the Max Planck Institute, Mainz, Germany)
    • …
    corecore