9 research outputs found
Global transcriptional response of pig brain and lung to natural infection by Pseudorabies virus
<p>Abstract</p> <p>Background</p> <p>Pseudorabies virus (PRV) is an alphaherpesviruses whose native host is pig. PRV infection mainly causes signs of central nervous system disorder in young pigs, and respiratory system diseases in the adult.</p> <p>Results</p> <p>In this report, we have analyzed native host (piglets) gene expression changes in response to acute pseudorabies virus infection of the brain and lung using a printed human oligonucleotide gene set from Illumina. A total of 210 and 1130 out of 23,000 transcript probes displayed differential expression respectively in the brain and lung in piglets after PRV infection (p-value < 0.01), with most genes displaying up-regulation. Biological process and pathways analysis showed that most of the up-regulated genes are involved in cell differentiation, neurodegenerative disorders, the nervous system and immune responses in the infected brain whereas apoptosis, cell cycle control, and the mTOR signaling pathway genes were prevalent in the infected lung. Additionally, a number of differentially expressed genes were found to map in or close to quantitative trait loci for resistance/susceptibility to pseudorabies virus in piglets.</p> <p>Conclusion</p> <p>This is the first comprehensive analysis of the global transcriptional response of the native host to acute alphaherpesvirus infection. The differentially regulated genes reported here are likely to be of interest for the further study and understanding of host viral gene interactions.</p
Recommended from our members
Global transcriptional response of pig brain and lung to natural infection by Pseudorabies virus.
BACKGROUND: Pseudorabies virus (PRV) is an alphaherpesviruses whose native host is pig. PRV infection mainly causes signs of central nervous system disorder in young pigs, and respiratory system diseases in the adult. RESULTS: In this report, we have analyzed native host (piglets) gene expression changes in response to acute pseudorabies virus infection of the brain and lung using a printed human oligonucleotide gene set from Illumina. A total of 210 and 1130 out of 23,000 transcript probes displayed differential expression respectively in the brain and lung in piglets after PRV infection (p-value < 0.01), with most genes displaying up-regulation. Biological process and pathways analysis showed that most of the up-regulated genes are involved in cell differentiation, neurodegenerative disorders, the nervous system and immune responses in the infected brain whereas apoptosis, cell cycle control, and the mTOR signaling pathway genes were prevalent in the infected lung. Additionally, a number of differentially expressed genes were found to map in or close to quantitative trait loci for resistance/susceptibility to pseudorabies virus in piglets. CONCLUSION: This is the first comprehensive analysis of the global transcriptional response of the native host to acute alphaherpesvirus infection. The differentially regulated genes reported here are likely to be of interest for the further study and understanding of host viral gene interactions.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Hypogonadal mouse, a model to study the effects of the endogenous lack of gonadotropins on apoptosis.
Testicular apoptosis is involved in the regulation of germ cell numbers, allowing optimal sperm production. Apoptosis has been described to occur in response to the absence of hormonal stimulation of the testis. Here we investigate the effect of the physiological lack of gonadotropins from birth using the hypogonadal (homozygous for the mutant allele Gnrh1(hpg)) mouse as a model. We pursued a concerted strategy using microarray analysis and RT-PCR to assess transcript levels, TUNEL to quantify the incidence of apoptosis, and Western blotting to assess the respective contribution of the extrinsic and intrinsic apoptotic pathways. Our results indicate a large increase in apoptosis of both somatic and germ cell compartments in the hpg testis, affecting Sertoli cells as well as germ cells of all ages. We confirmed our observations of Sertoli cell apoptosis using anti-Mullerian inhibiting substance staining and staining for cleaved fodrin alpha. In the somatic compartment, apoptosis is primarily regulated via the membrane receptor (extrinsic) apoptotic pathway, while in the germ cell compartment, regulation occurs via both the mitochondrial (intrinsic) and membrane receptor (extrinsic) apoptotic pathways, the latter potentially in a stage-specific manner. This study is the first report of spermatogonial apoptosis in response to gonadotropin deficiency as well as the first report of Sertoli cell apoptosis in response to gonadotropin deficiency in the mouse
Loss of TSLC1 Causes Male Infertility Due to a Defect at the Spermatid Stage of Spermatogenesis
Tumor suppressor of lung cancer 1 (TSLC1), also known as SgIGSF, IGSF4, and SynCAM, is strongly expressed in spermatogenic cells undergoing the early and late phases of spermatogenesis (spermatogonia to zygotene spermatocytes and elongating spermatids to spermiation). Using embryonic stem cell technology to generate a null mutation of Tslc1 in mice, we found that Tslc1 null male mice were infertile. Tslc1 null adult testes showed that spermatogenesis had arrested at the spermatid stage, with degenerating and apoptotic spermatids sloughing off into the lumen. In adult mice, Tslc1 null round spermatids showed evidence of normal differentiation (an acrosomal cap and F-actin polarization indistinguishable from that of wild-type spermatids); however, the surviving spermatozoa were immature, malformed, found at very low levels in the epididymis, and rarely motile. Analysis of the first wave of spermatogenesis in Tslc1 null mice showed a delay in maturation by day 22 and degeneration of round spermatids by day 28. Expression profiling of the testes revealed that Tslc1 null mice showed increases in the expression levels of genes involved in apoptosis, adhesion, and the cytoskeleton. Taken together, these data show that Tslc1 is essential for normal spermatogenesis in mice
Loss of TSLC1 Causes Male Infertility Due to a Defect at the Spermatid Stage of Spermatogenesis
Tumor suppressor of lung cancer 1 (TSLC1), also known as SgIGSF, IGSF4, and SynCAM, is strongly expressed in spermatogenic cells undergoing the early and late phases of spermatogenesis (spermatogonia to zygotene spermatocytes and elongating spermatids to spermiation). Using embryonic stem cell technology to generate a null mutation of Tslc1 in mice, we found that Tslc1 null male mice were infertile. Tslc1 null adult testes showed that spermatogenesis had arrested at the spermatid stage, with degenerating and apoptotic spermatids sloughing off into the lumen. In adult mice, Tslc1 null round spermatids showed evidence of normal differentiation (an acrosomal cap and F-actin polarization indistinguishable from that of wild-type spermatids); however, the surviving spermatozoa were immature, malformed, found at very low levels in the epididymis, and rarely motile. Analysis of the first wave of spermatogenesis in Tslc1 null mice showed a delay in maturation by day 22 and degeneration of round spermatids by day 28. Expression profiling of the testes revealed that Tslc1 null mice showed increases in the expression levels of genes involved in apoptosis, adhesion, and the cytoskeleton. Taken together, these data show that Tslc1 is essential for normal spermatogenesis in mice