27 research outputs found
Computer Aided Identification of Small Molecules Disrupting uPAR/α5β1- Integrin Interaction: A New Paradigm for Metastasis Prevention
Disseminated dormant cancer cells can resume growth and eventually form overt metastases, but the underlying molecular mechanism responsible for this change remains obscure. We previously established that cell surface interaction between urokinase receptor (uPAR) and alpha5beta1-integrin initiates a sequel of events, involving MAPK-ERK activation that culminates in progressive cancer growth. We also identified the site on uPAR that binds alpha5beta1-integrin. Disruption of uPAR/integrin interaction blocks ERK activation and forces cancer cells into dormancy.Using a target structure guided computation docking we identified 68 compounds from a diversity library of 13,000 small molecules that were predicted to interact with a previously identified integrin-binding site on uPAR. Of these 68 chemical hits, ten inhibited ERK activation in a cellular assay and of those, 2 compounds, 2-(Pyridin-2-ylamino)-quinolin-8-ol and, 2,2'-(methylimino)di (8-quinolinol) inhibited ERK activation by disrupting the uPAR/integrins interaction. These two compounds, when applied in vivo, inhibited ERK activity and tumor growth and blocked metastases of a model head and neck carcinoma.We showed that interaction between two large proteins (uPAR and alpha5beta1-integrin) can be disrupted by a small molecule leading to profound downstream effects. Because this interaction occurs in cells with high uPAR expression, a property almost exclusive to cancer cells, we expect a new therapy based on these lead compounds to be cancer cell specific and minimally toxic. This treatment, rather than killing disseminated metastatic cells, should induce a protracted state of dormancy and prevent overt metastases
Meibum Lipid Composition in Asians with Dry Eye Disease
10.1371/journal.pone.0024339PLoS ONE610
High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo
High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process
Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020
Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding Bill & Melinda Gates Foundation