429 research outputs found

    Optical determination and identification of organic shells around nanoparticles: application to silver nanoparticles

    Full text link
    We present a simple method to prove the presence of an organic shell around silver nanoparticles. This method is based on the comparison between optical extinction measurements of isolated nanoparticles and Mie calculations predicting the expected wavelength of the Localized Surface Plasmon Resonance of the nanoparticles with and without the presence of an organic layer. This method was applied to silver nanoparticles which seemed to be well protected from oxidation. Further experimental characterization via Surface Enhanced Raman Spectroscopy (SERS) measurements allowed to identify this protective shell as ethylene glycol. Combining LSPR and SERS measurements could thus give proof of both presence and identification for other plasmonic nanoparticles surrounded by organic shells

    Quantization Watermarking for Joint Compression and Data Hiding Schemes

    Get PDF
    International audienceEnrichment and protection of JPEG2000 images is an important issue. Data hiding techniques are a good solution to solve these problems. In this context, we can consider the joint approach to introduce data hiding technique into JPEG2000 coding pipeline. Data hiding consists of imperceptibly altering multimedia content, to convey some information. This process is done in such a way that the hidden data is not perceptible to an observer. Digital watermarking is one type of data hiding. In addition to the imperceptibility and payload constraints, the watermark should be robust against a variety of manipulations or attacks. We focus on trellis coded quantization (TCQ) data hiding techniques and propose two JPEG2000 compression and data hiding schemes. The properties of TCQ quantization, defined in JPEG2000 part 2, are used to perform quantization and information embedding during the same time. The first scheme is designed for content description and management applications with the objective of achieving high payloads. The compression rate/imperceptibility/payload trade off is our main concern. The second joint scheme has been developed for robust watermarking and can have consequently many applications. We achieve the better imperceptibility/robustness trade off in the context of JPEG2000 compression. We provide some experimental results on the implementation of these two schemes

    Titanium oxo-clusters derivatized from the Ti10O12(cat)8(py)8 complex: structural investigation and spectroscopic studies of light absorption

    Get PDF
    A series of deep-red colored nano-sized titanium oxo-clusters bearing catecholato ligands is reported. These architectures are produced via post-synthetic modification of the Ti10O12(cat)8(py)8 (cat = catecholato, py = pyridine) complex through quantitative substitution of labile pyridine ligands by three substituted pyridines (pico, 4-Phpy and pyrald). The crystal structure analysis reveals a common Ti10O12(cat)8 backbone for the three isolated molecular architectures. Partial charge analysis indicates two types of titanium atoms within these complexes with one resembling titanium(IV) found in TiO2. These complexes strongly absorb visible light in solution (λmax = 411 nm, ε = 10 800 for Ti10O12(cat)8(py)8 in CHCl3) and in the solid-state. The band gaps estimated from the reflectance spectra are between 1.85 eV and 1.97 eV. The present work also details the HOMO and LUMO representations obtained via DFT calculation for Ti10O12(cat)8(py)8 and a virtual Ti10O12(cat)8 complex as well as the DOS (density of states) plots calculated for those structures. This computational study highlights an impact of the pyridine ligand on the DOS plots

    Identification of Maize Silicon Influx Transporters

    Get PDF
    Maize (Zea mays L.) shows a high accumulation of silicon (Si), but transporters involved in the uptake and distribution have not been identified. In the present study, we isolated two genes (ZmLsi1 and ZmLsi6), which are homologous to rice influx Si transporter OsLsi1. Heterologous expression in Xenopus laevis oocytes showed that both ZmLsi1 and ZmLsi6 are permeable to silicic acid. ZmLsi1 was mainly expressed in the roots. By contrast, ZmLsi6 was expressed more in the leaf sheaths and blades. Different from OsLsi1, the expression level of both ZmLsi1 and ZmLsi6 was unaffected by Si supply. Immunostaining showed that ZmLsi1 was localized on the plasma membrane of the distal side of root epidermal and hypodermal cells in the seminal and crown roots, and also in cortex cells in lateral roots. In the shoots, ZmLsi6 was found in the xylem parenchyma cells that are adjacent to the vessels in both leaf sheaths and leaf blades. ZmLsi6 in the leaf sheaths and blades also exhibited polar localization on the side facing towards the vessel. Taken together, it can be concluded that ZmLsi1 is an influx transporter of Si, which is responsible for the transport of Si from the external solution to the root cells and that ZmLsi6 mainly functions as a Si transporter for xylem unloading

    Area distribution and the average shape of a L\'evy bridge

    Full text link
    We consider a one dimensional L\'evy bridge x_B of length n and index 0 < \alpha < 2, i.e. a L\'evy random walk constrained to start and end at the origin after n time steps, x_B(0) = x_B(n)=0. We compute the distribution P_B(A,n) of the area A = \sum_{m=1}^n x_B(m) under such a L\'evy bridge and show that, for large n, it has the scaling form P_B(A,n) \sim n^{-1-1/\alpha} F_\alpha(A/n^{1+1/\alpha}), with the asymptotic behavior F_\alpha(Y) \sim Y^{-2(1+\alpha)} for large Y. For \alpha=1, we obtain an explicit expression of F_1(Y) in terms of elementary functions. We also compute the average profile < \tilde x_B (m) > at time m of a L\'evy bridge with fixed area A. For large n and large m and A, one finds the scaling form = n^{1/\alpha} H_\alpha({m}/{n},{A}/{n^{1+1/\alpha}}), where at variance with Brownian bridge, H_\alpha(X,Y) is a non trivial function of the rescaled time m/n and rescaled area Y = A/n^{1+1/\alpha}. Our analytical results are verified by numerical simulations.Comment: 21 pages, 4 Figure

    Barley plasma membrane intrinsic proteins (PIP aquaporins) as water and CO2 transporters

    Get PDF
    We identified barley aquaporins and demonstrated that one, HvPIP2;1, transports water and CO2. Regarding water homeostasis in plants, regulations of aquaporin expression were observed in many plants under several environmental stresses. Under salt stress, a number of plasma membrane-type aquaporins were down-regulated, which can prevent continuous dehydration resulting in cell death. The leaves of transgenic rice plants that expressed the largest amount of HvPIP2;1 showed a 40% increase in internal CO2 conductance compared with leaves of wild-type rice plants. The rate of CO2 assimilation also increased in the transgenic plants. The goal of our plant aquaporin research is to determine the key aquaporin species responsible for water and CO2 transport, and to improve plant water relations, stress tolerance, CO2 uptake or assimilation, and plant productivity via molecular breeding of aquaporins.</p

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination.

    Get PDF
    The functional determinants of H3K4me3, their potential dependency on histone H2B monoubiquitination, and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in Saccharomyces cerevisiae, where a single SET1 protein catalyzes H3K4me3 as part of COMPlex of proteins ASsociated with Set1 (COMPASS), in Arabidopsis thaliana, this activity involves multiple histone methyltransferases. Among these, the plant-specific SET DOMAIN GROUP 2 (SDG2) has a prominent role. We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. We show that S2Lb co-purifies with the AtCOMPASS core subunit WDR5, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. However, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2, or H3K4me3, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been co-opted by the plant-specific SDG2 histone methyltransferase and mediates H3K4me3 deposition through an H2B monoubiquitination-independent pathway in Arabidopsis

    Tissue Clearing and Deep Imaging of the Kidney Using Confocal and Two-Photon Microscopy

    Get PDF
    Microscopic and macroscopic evaluation of biological tissues in three dimensions is becoming increasingly popular. This trend is coincident with the emergence of numerous tissue clearing strategies, and advancements in confocal and two-photon microscopy, enabling the study of intact organs and systems down to cellular and sub-cellular resolution. In this chapter, we describe a wholemount immunofluorescence technique for labeling structures in renal tissue. This technique combined with solvent-based tissue clearing and confocal imaging, with or without two-photon excitation, provides greater structural information than traditional sectioning and staining alone. Given the addition of paraffin embedding to our method, this hybrid protocol offers a powerful approach to combine confocal or two-photon findings with histological and further immunofluorescent analysis within the same tissue
    corecore