7 research outputs found

    Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review

    Get PDF
    Petroleum based thermoplastics are widely used in a range of applications, particularly in packaging. However, their usage has resulted in soaring pollutant emissions. Thus, researchers have been driven to seek environmentally friendly alternative packaging materials which are recyclable as well as biodegradable. Due to the excellent mechanical properties of natural fibres, they have been extensively used to reinforce biopolymers to produce biodegradable composites. A detailed understanding of the properties of such composite materials is vital for assessing their applicability to various products. The present review discusses several functional properties related to packaging applications in order to explore the potential of bamboo fibre fabric-poly (lactic) acid composites for packaging applications. Physical properties, heat deflection temperature, impact resistance, recyclability and biodegradability are important functional properties of packaging materials. In this review, we will also comprehensively discuss the chronological events and applications of natural fibre biopolymer composites

    Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review

    Get PDF
    Petroleum based thermoplastics are widely used in a range of applications, particularly in packaging. However, their usage has resulted in soaring pollutant emissions. Thus, researchers have been driven to seek environmentally friendly alternative packaging materials which are recyclable as well as biodegradable. Due to the excellent mechanical properties of natural fibres, they have been extensively used to reinforce biopolymers to produce biodegradable composites. A detailed understanding of the properties of such composite materials is vital for assessing their applicability to various products. The present review discusses several functional properties related to packaging applications in order to explore the potential of bamboo fibre fabric-poly (lactic) acid composites for packaging applications. Physical properties, heat deflection temperature, impact resistance, recyclability and biodegradability are important functional properties of packaging materials. In this review, we will also comprehensively discuss the chronological events and applications of natural fibre biopolymer composites

    A review on nanocellulosic fibres as new material for sustainable packaging: process and applications

    Get PDF
    The demand for exploring advanced and eco-friendly sustainable packaging materials with superior physical, mechanical and barrier properties is increasing. The materials that are currently used in packaging for food, beverage, medical and pharmaceutical products, as well as in industrial applications, are non-degradable, and thus, these materials are raising environmental pollution concerns. Numerous studies have been conducted on the utilization of bio-based materials in the pursuit of developing sustainable packaging materials. Although significant improvements have been achieved, a balance among environmental concerns, economic considerations and product packaging performance is still lacking. This is likely due to bio-based materials being used in product packaging applications without a proper design. The present review article intends to summarize the information regarding the potential applications of cellulosic nanofiber for the packaging. The importance of the design process, its principles and the challenges of design process for sustainable packaging are also summarized in this review. Overall it can be concluded that scientists, designers and engineers all are necessarily required to contribute towards research in order to commercially exploit cellulose nanofiber for sustainable packaging

    Cellulosic Pulp Fiber as Reinforcement Materials in Seaweed-Based Film

    Get PDF
    Composite materials made from renewable resources can minimize the environmental pollution. In this work, biocomposite films were produced using seaweed as matrix and empty fruit bunch (EFB) pulp fibers as reinforcement. Based on the results, the EFB pulp-seaweed composite films exhibited better mechanical properties than the seaweed film. It was also observed that 50% EFB pulp loading gave the highest tensile strength (81.4 MPa) and elongation at break (5.4%). This phenomenon was supported by SEM analysis, in which more fiber breakage than fiber pull-out was observed on the tensile fracture surface of composite film. Additionally, no agglomeration of the pulp fibers was observed. Instead, the pulp fibers were homogenously distributed throughout the film. In contrast, the contact angle of the seaweed-based films started to decrease once the pulp fibers were added. The decrease in the contact angle was attributed to the hydrophilic nature of the pulp fibers. Nevertheless, the contact angle values of all composite films were still comparatively high and thus, this would not affect their application as a packaging film

    Effect of hydrolysis treatment on cellulose nanowhiskers from oil palm (Elaeis guineesis) fronds: morphology, chemical, crystallinity, and thermal characteristics.

    No full text
    Oil palm fronds biomass was used as a source for isolation of cellulose nanowhiskers (CNW), and its subsequent characterization was done. Non-cellulosic components such a lignin, hemicellulose, and pectin were removed from the biomass by chemimechanical alkaline hydrogen peroxide method followed by sulphuric acid hydrolysis having different time duration of hydrolysis. Apart from the progressive reduction in peaks characteristic of hemicellulose and lignin dissolution, FTIR spectroscopy analysis showed that the hydrolysis did not affect the chemical structure of CNW was revealed by TEM. XRD analysis revealed that the natural structural of cellulose I polymorph was mantained irrespective of the hydrolysis time. High thermal stability and aspect ratio of the extracted CNW demostrated its suitability as a reinforcement material in nanocomposites

    Isolation and Characterization of Cellulose Nanofibers from Gigantochloa scortechinii as a Reinforcement Material

    No full text
    Cellulose nanofibers (CNF) were isolated from Gigantochloa scortechinii bamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%
    corecore