150 research outputs found
Impact de pollutions ponctuelles sur les phytocénoses des rivières acides à neutres du Limousin (Massif Central, France)
L'impact des pollutions ponctuelles sur les phytocénoses aquatiques est étudié autour des rejets de 12 agglomérations dont 9 sont équipées d'une station d'épuration. Un échantillonnage systématique avec segmentation du cours d'eau autour de chaque rejet est réalisé. Sur chaque secteur, des relevés de végétation sont pratiqués au niveau de faciès d'écoulements homogènes dont on caractérise le milieu physique parallèlement à une analyse physicochimique de l'eau.L'ensemble des rejets provoque globalement une élévation de la conductivité, des teneurs en ammonium, nitrates et orthophosphates.Cela ce traduit par la régression de la phytocénose à Callitriche hamulata et Myriophyllum alterniflorum, par le développement de Ranunculus peltatus, Callitriche platycarpa et d'espèces cryptogames telles que Leptodyctium riparium, ou Melosira sp.Une Analyse en Composantes Principales menée sur l'ensemble des données permet d'opposer des phytocénoses propres aux secteurs amonts (Scapania undulata, Chiloscyphus polyanthus) à d'autres situées au niveau de rejets (Callitriche platycarpa, Leptodictyum riparium, Melosira sp.,).Une Analyse Canonique de Correspondances valide le déterminisme de la qualité physicochimique de l'eau sur la végétation. La conductivité, les teneurs en ammonium, nitrates et orthophosphates deviennent prépondérants par rapport aux facteurs du milieu physique classiquement discriminants dans l'installation des phytocénoses dans les rivières limousines.The impact of located pollution on aquatic phytocénoses is studied around 12 cities discharge. Nine of them are fitted out purification plant.The sampling method is based on consecutive segments from upstream to downstream. On each sector, vegetation records are realized in homogeneous water runoff facies, which are characterized by physical factors as well as water value measures.The whole discharge leads globally to an increase of conductivity, ammonium amount, nitrates and orthophosphates. The consequence of that is a decrease of Callitriche hamulata and Myriophyllum alterniflorum phytocénoses, a development of Ranunculus peltatus, Callitriche platycarpa and cryptogams species like Leptodictyum riparium or Melosira sp.A Component Principal Analysis applied on data, distinguishes phytocénoses belonging to upstream sectors (Scapania undulata, Chiloscyphus polyanthus) from the ones of discharges (Callitriche platycarpa, Leptodictyum riparium, Melosira sp.).A Canonical Correspondence Analysis validates the impact of physico-chemical water quality on vegetation. Conductivity, ammonium amount, nitrates and orthophosphates become more preponderant in comparison with physical environments usually discriminant for phytocénoses installation in Limousin rivers
Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments
International audienceReplacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains
Variability of aerosol vertical distribution in the Sahel
In this work, we have studied the seasonal and inter-annual variability of the aerosol vertical distribution over Sahelian Africa for the years 2006, 2007 and 2008, characterizing the different kind of aerosols present in the atmosphere in terms of their optical properties observed by ground-based and satellite instruments, and their sources searched for by using trajectory analysis. This study combines data acquired by three ground-based micro lidar systems located in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analysis (AMMA), by the AEROsol RObotic NETwork (AERONET) sun-photometers and by the space-based Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Observations). <br><br> During winter, the lower levels air masses arriving in the Sahelian region come mainly from North, North-West and from the Atlantic area, while in the upper troposphere air flow generally originates from West Africa, crossing a region characterized by the presence of large biomass burning sources. The sites of Cinzana, Banizoumbou and M'Bour, along a transect of aerosol transport from East to West, are in fact under the influence of tropical biomass burning aerosol emission during the dry season, as revealed by the seasonal pattern of the aerosol optical properties, and by back-trajectory studies. <br><br> Aerosol produced by biomass burning are observed mainly during the dry season and are confined in the upper layers of the atmosphere. This is particularly evident for 2006, which was characterized by a large presence of biomass burning aerosols in all the three sites. <br><br> Biomass burning aerosol is also observed during spring when air masses originating from North and East Africa pass over sparse biomass burning sources, and during summer when biomass burning aerosol is transported from the southern part of the continent by the monsoon flow. <br><br> During summer months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2) and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude). In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites. <br><br> Summer is in fact characterized by extensive and fast convective phenomena. <br><br> Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity. <br><br> The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland
PHOTONS/AERONET sunphotometer network overview. Description – Activities - Results
Fourteenth International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics celebrado del 24 al 30 de junio de 2007 en Buryatia, Russia
Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures
Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to similar to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD
Carrion Beetles Visiting Pig Carcasses during Early Spring in Urban, Forest and Agricultural Biotopes of Western Europe
Carrion beetles are important in terrestrial ecosystems, consuming dead mammals and promoting the recycling of organic matter into ecosystems. Most forensic studies are focused on succession of Diptera while neglecting Coleoptera. So far, little information is available on carrion beetles postmortem colonization and decomposition process in temperate biogeoclimatic countries. These beetles are however part of the entomofaunal colonization of a dead body. Forensic entomologists need databases concerning the distribution, ecology and phenology of necrophagous insects, including silphids. Forensic entomology uses pig carcasses to surrogate human decomposition and to investigate entomofaunal succession. However, few studies have been conducted in Europe on large carcasses. The work reported here monitored the presence of the carrion beetles (Coleoptera: Silphidae) on decaying pig carcasses in three selected biotopes (forest, crop field, urban site) at the beginning of spring. Seven species of Silphidae were recorded: Nicrophorus humator (Gleditsch), Nicrophorus vespillo (L.), Nicrophorus vespilloides (Herbst), Necrodes littoralis L., Oiceoptoma thoracica L., Thanatophilus sinuatus (Fabricius), Thanatophilus rugosus (L.). All of these species were caught in the forest biotope, and all but O. thoracica were caught in the agricultural biotope. No silphids were caught in the urban site
Dermatocarpon weberi (Ach.) Mann : un lichen aquatique bioaccumulateur de micropolluants métalliques des cours d'eau
Les métaux traces présents dans les cours d'eau sont à l'origine d'une micropollution pouvant avoir des répercussions importantes sur la chaîne alimentaire. Le dosage de ces éléments par des méthodes analytiques usuelles est difficile. Pour estimer leur impact, on fait donc appel à des compartiments biologiques tels que les bryophytes capables de fixer les micropolluants de l'eau.
Dans ce travail, les auteurs ont étudié des lichens, végétaux issus de la symbiose d'un champignon et d'une algue, en tant que bioaccumulateurs d'élémentstraces tels que le cuivre le cadmium ou le plomb, potentiellement présents dans les rivières. Ils ont montré, par des expériences en laboratoire, que la biomasse lichénique fixe rapidement les métaux en solution, que cette captation est proportionnelle à la quantité de métal en présence sans observer apparemment de seuil toxique même à de fortes concentrations.
De plus, les auteurs de cette étude ont individualisé un lichen bien adapté au milieu aquatique, Dermatocarpon weberi, doué de bonnes capacités de bioaccumulation de micropollutions métalliques et apparemment supérieures à celles de certaines autres macrophytes aquatiques (bryophytes-hépatiques ou plante phanérogames). Ces constatations ont été confirmées par des transplantations de lichens réalisées dans la rivière Vienne (Massif Central, France) et en particulier en amont et en aval d'une usine de raffinage électrolytique du cuivre où les quantités de métal fixé par les lichens traduisent la pollution qu'engendre cette activité
- …